Advertisement

Left ventricular vs. biventricular mechanical support: Decision making and strategies for avoidance of right heart failure after left ventricular assist device implantation

      Highlights

      • Single risk factors for RV failure are less predictable for post-LVAD RV function.
      • Variables incorporating RV geometry, function and load can predict RV stability.
      • Complex scoring systems can predict post-LVAD mortality by RV or end-organ failure.
      • BVADs can be avoided by favorable modification of risk-factors for post-LVAD RVF.

      Abstract

      Left ventricular assist devices (LVADs) are safer and provide better survival and better quality of life than biventricular assist devices (BVADs) but end-stage heart failure often involves both ventricles, even if its initial cause was left-sided heart disease. Right ventricular failure (RVF) is also a severe complication in about 25% of patients receiving an LVAD, with high perioperative morbidity (renal, hepatic or multi-organ failure) and mortality. Patients who receive an RV assist device (RVAD) only days after LVAD insertion fare much worse than those who receive an RVAD simultaneously with LVAD implantation. Temporary RVAD support in LVAD recipients with high risk for postoperative RVF can avoid permanent BVAD support. Thus, patients who definitely need a BVAD should already be identified preoperatively or at least intra-operatively. However, although the initial biochemical, hemodynamic and echocardiographic patient profiles at admission may suggest the need for a BVAD, many risk factors may be favorably modified by various strategies that may result in avoidance of RVF after LVAD implantation.
      This article summarizes the knowledge of risk factors for irreversible RVF after LVAD implantation and strategies to optimize RV function (preoperatively, intra-operatively and post-operatively) aimed to reduce the number of BVAD implantations. Special attention is focused on assessment of RV size, geometry and function in relation to loading conditions with the goal of predicting preoperatively the RV changes which might be induced by RV afterload reduction with the LVAD. The review also provides a theoretical and practical basis for clinicians intending to be engaged in this field.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kaczorowski D.J.
        • Woo Y.J.
        Who needs an RVAD in addition to an LVAD?.
        Cardiol. Clin. J. 2011; 29: 599-605
        • Miller L.W.
        • Russel S.D.
        Candidate selection for long-term left ventricular assist device therapy for advanced heart failure.
        in: Kormos R.L. Miller L.W. Mechanical Circulatory Support: A Companion to Braunwald's Heart Disease. Elsevier Saunders, Philadelphia2012: 72-87
        • Schlant R.C.
        • Sonnenblick E.H.
        • Katz A.M.
        Pathophysiology of heart failure.
        in: Alexander R.W. Schlant R.C. Fuster V. Hurst's Heart. McGraw-Hill Companies, Inc., NY1998: 687-727
        • Mudd J.O.
        • Russel S.D.
        Neurohormones and cytokines in heart failure.
        in: Kirklin K.J. Banner N.R. Jessup M. ISHLT Monograph Series: Advanced Heart Failure. vol. 3 (part 1). Elsevier, Philadelphia, London, Toronto, Montreal, Sydney, Tokio2009: 11-19
        • Hwang K.C.
        • Gray C.D.
        • Sweet W.E.
        • Im Moravec C.S.
        • Im M.-J.
        α1-Adrenergic receptor coupling with Gh in failing human heart.
        Circulation. 1996; 94: 718-726
        • Forfar J.C.
        Neuroendocrine activation in congestive heart failure.
        Am. J. Cardiol. 1991; 67: 3C-15C
        • Goldsmith S.R.
        • Francis G.S.
        • Cowley Jr., A.W.
        • Levine T.B.
        • Cohn J.N.
        Increased plasma arginine vasopressin levels in patients with congestive heart failure.
        J. Am. Coll. Cardiol. 1983; I: 1385-1390
        • Manthey J.
        • Kietz R.
        • Opherk D.
        • Osterziel K.J.
        • Leinberger H.
        • Kübler W.
        Baroreceptor-mediated release of vasopressin in patients with chronic congestive heart failure and defective sympathetic responsiveness.
        Am. J. Cardiol. 1992; 70: 724-728
        • Cody R.J.
        • Haas G.J.
        • Binkley P.F.
        • Caper Q.
        • Kelley R.
        Plasma endothelin correlates with the extend of pulmonary hypertension in patients with chronic congestive heart failure.
        Circulation. 1992; 58: 504-509
        • Levine B.
        • Kalman J.
        • Mayer L.
        • Fillit H.M.
        • Parker M.
        Elevated circulating levels of tumor necrosis factor in severe chronic heart failure.
        N. Engl. J. Med. 1990; 323: 236-241
        • Torre-Amione G.
        • Kapadia S.
        • Benedict C.
        • Oral H.
        • Young J.B.
        • Mann D.L.
        Pro-inflammatory cytokine levels in patients with depressed left ventricular function: a report from the Studies of Left Ventricular Dysfunction (SOLVD).
        J. Am. Coll. Cardiol. 1996; 27: 1201-1206
        • Katz S.D.
        • Biasucci L.
        • Sabba C.
        • Strom J.A.
        • Jondeau G.
        • Galvao M.
        • et al.
        Impaired endothelium-mediated vasodilatation in the peripheral vasculature of patients with congestive heart failure.
        Am. J. Cardiol. 1992; 19: 918-925
        • Mann D.L.
        Pathophysiology of heart failure.
        in: Bonow R. Mann D.L. Zipes D.P. Libby P. Braunwald's Heart Disease. A Textbook of Cardiovascular Medicine. 9th ed. 2012: 487-504
        • Heywood T.J.
        • Rathi S.
        • Jaski B.
        Pathophysiology of stage D heart failure.
        in: Kormos R.L. Miller L.W. Mechanical Circulatory Support: A Companion to Braunwald's Heart Disease. Elsevier Saunders, Philadelphia2012: 42-55
        • Thibault G.E.
        Clinical problem solving: studying the classics.
        N. Engl. J. Med. 1995; 333: 648-652
        • Cheng W.
        • Kajstura J.
        • Li P.
        • Wolin M.S.
        • Sonnenblick E.H.
        • et al.
        Stretch-induced programmed myocyte cell death.
        J. Clin. Invest. 1995; 96: 2247-2259
        • Fadel E.
        • Mercier O.
        • Mussot S.
        • Leroy-Ladurie F.
        • Cerrina J.
        • Chapelier A.
        • Simonneau G.
        • Dartevelle P.
        Long-term outcome of double-lung and heart–lung transplantation; a comparative retrospective study of 219 patients.
        Eur. J. Cardiothorac. Surg. 2010; 38: 277-284
        • Dandel M.
        • Potapov E.
        • Krabatsch T.
        • et al.
        Load dependency of right ventricular performance is a major factor to be considered in decision making before ventricular assist device implantation.
        Circulation. 2013; 128: S14-S23
        • Kukucka M.
        • Potapov E.
        • Stepaneko A.
        • et al.
        Acute impact of left ventricular unloading by left ventricular assist device on right ventricle geometry and function: effect of nitric oxide inhalation.
        J. Thorac. Cardiovasc. Surg. 2011; 141: 1009-1014
        • Dang N.
        • Topkara V.
        • Mercando M.
        • et al.
        Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure.
        J. Heart Lung Transplant. 2006; 25: 1-6
        • Matthews J.C.
        • Koelling T.
        • Pagani F.
        • Aaronson K.
        The right ventricular failure risk score a preoperative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates.
        J. Am. Coll. Cardiol. 2008; 51: 2163-2172
        • Ochiai Y.
        • McCarthy P.
        • Smedira N.
        • et al.
        Predictors of severe right ventricular failure after implantable assist device insertion: analysis of 245 patients.
        Circulation. 2002; 106 (Suppl.): 1198-1202
        • Maeder M.T.
        • Leet A.
        • Ross A.
        • et al.
        Changes in right ventricular function during continuous-low left ventricular assist device support.
        J. Heart Lung Transplant. 2009; 28: 360-366
        • Drakos S.G.
        • Janicki L.
        • Horne B.D.
        • et al.
        Risk factors of right ventricular failure after left ventricular assist device implantation.
        Am. J. Cardiol. 2010; 105: 1030-1035
        • Kirklin J.K.
        • Naftel D.C.
        • Kormos R.L.
        • et al.
        Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical support patients.
        J. Heart Lung Transplant. 2013; 32: 141-156
        • Potapov E.V.
        • Stepanenko A.
        • Dandel M.
        • et al.
        Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device.
        J. Heart Lung Transplant. 2008; 27: 1275-1281
        • Deng M.C.
        • Edwards L.B.
        • Hertz M.I.
        • et al.
        Mechanical circulatory support device database of the International Society for Heart and Lung Transplantation: third annual report—2005.
        J. Heart Lung Transplant. 2005; 24: 1182-1187
        • John R.
        • Boyle A.
        Preoperative patient optimization for mechanical circulatory support.
        in: Kormos R.L. Miller L.W. Mechanical Circulatory Support: A Companion to Braunwald's Heart Disease. Elsevier Saunders, Philadelphia2012: 88-98
        • John R.
        • Liao K.
        • Kamdar F.
        • et al.
        Effects on pre- and post-transplant pulmonary hemodynamics in patients with continuous-flow left ventricular assist devices.
        J. Thorac. Cardiovasc. Surg. 2010; 140: 447-452
        • Kavarana M.N.
        • Pessin-Minsley M.S.
        • Urtecho J.
        • et al.
        Right ventricular dysfunction and organ failure in left ventricular assist device recipients: a continuing problem.
        Ann. Thorac. Surg. 2002; 73: 745-750
        • Dandel M.
        • Knosalla C.
        • Kemper D.
        • Stein J.
        • Hetzer R.
        Assessment of right ventricular adaptability to loading conditions can improve the timing of listing to transplantation in patients with pulmonary arterial hypertension.
        J. Heart Lung Transplant. Nov. 12 2014; (Epub ahead of print)
        • Jasaityte R.
        • Dandel M.
        • Lehmkuhl H.
        • Hetzer R.
        Prediction of short-term outcomes in patients with idiopathic dilated cardiomyopathy referred for transplantation using standard echocardiography and strain imaging.
        Transplant. Proc. 2009; 33: 3539-3542
        • Kormos R.L.
        • Teutenberg J.J.
        • Pagani F.D.
        • et al.
        Right ventricular failure in patients with the HeartMate II continuous flow left ventricular assist device: incidence, risk factors and effect on outcomes.
        J. Thorac. Cardiovasc. Surg. 2010; 139: 1316-1324
        • Fukamachi K.
        • McCarty P.M.
        • Smedira N.G.
        • et al.
        Preoperative risk factors for right ventricular failure after implantable left ventricular assist device insertion.
        Ann. Thorac. Surg. 1999; 68: 2181-2184
        • Topilsky Y.
        • Oh J.K.
        • Dipesh K.S.
        • et al.
        Echocardiographic prfedictors of adverse outcomes after continuous left ventricular assist device implantation.
        J. Am. Coll. Cardiol. Img. 2011; 4: 211-222
        • Baumwol J.
        • Macdonald P.S.
        • Keogh A.M.
        • et al.
        Right heart failure and “failure to thrive” after left ventricular assist device implantation: clinical predictors and outcome.
        J. Heart Transplant. 2011; 30: 888-895
        • Santambrogio L.
        • Bianchi T.
        • Fuardo M.
        • et al.
        Right ventricular failure after left ventricular assist device insertion: preoperative risk factors.
        Interact. Cardiovasc. Thorac. Surg. 2006; 5: 379-382
        • Puwanant S.
        • Hamilton K.K.
        • Klodell C.T.
        • et al.
        Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation.
        J. Heart Lung Transplant. 2008; 27: 1102-1107
        • Kato S.T.
        • Farr M.
        • Schulze P.C.
        • et al.
        Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation.
        Am. J. Cardiol. 2012; 109: 246-251
        • Raina A.
        • Harish R.
        • Rammohan S.
        • et al.
        Postoperative right ventricular failure after left ventricular assist device placement ir predicted by preoperative echocardiographic structural, hemodynamic and functional parameters.
        J. Card. Fail. 2013; 19: 16-24
        • Grant A.D.M.
        • Smedira G.N.
        • Starling R.C.
        • Marwick T.H.
        Independent and incremental role of quantitative right ventricular evaluation for prediction of right ventricular failure after ventricular assist device implantation.
        J. Am. Coll. Cardiol. 2012; 60: 521-528
        • Imamura T.
        • Koichiro K.
        • Kato N.
        • et al.
        Late-onset right ventricular failure in patient with preoperative small left ventricle after implantation of continuous flow left ventricular assist device.
        Circ. J. 2014; 78: 625-633
        • Atluri P.
        • Goldstone A.B.
        • Fairman A.S.
        • et al.
        Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era.
        Ann. Thorac. Surg. 2013; 96: 857-864
        • Vivo R.P.
        • Cordero-Reyes A.M.
        • Qamar U.
        • et al.
        Increased right-to-left diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device.
        J. Heart Lung Transplant. 2013; 32: 792-799
        • Kukucka M.
        • Stepanenko A.
        • Potapov E.
        • et al.
        Right-to-left ventricular end-diastolic diameter and prediction of right ventricular failure with continuous-flow left ventricular assist devices.
        J. Heart Lung Transplant. 2011; 30: 64-69
        • Fitzpatrick III, J.R.
        • Frederick J.R.
        • Hsu V.M.
        • et al.
        Risk score derived from preoperative data analysis predicts the need for biventricular mechanical circulatory support.
        J. Heart Lung Transplant. 2008; 27: 1286-1292
        • Shiga T.
        • Kinugawa K.
        • Imamura T.
        • et al.
        Combination evaluation of preoperative risk indices predicts requirement of biventricular assist device.
        Circ. J. 2012; 76: 2785-2791
        • Argiriou M.
        • Kolokotron S.-M.
        • Sakellaridis T.
        • et al.
        Right heart failure post left ventricular assist device implantation.
        J. Thorac. Dis. 2014; 6: S52-S59
        • Schenk S.
        • McCarty P.M.
        • Blackstone E.H.
        • et al.
        Duration of inotropic support after left ventricular assist device implantation: risk factors and impact on outcome.
        J. Thorac. Cardiovasc. Surg. 2006; 131: 447-454
        • Imamura T.
        • Kinugaea K.
        • Shiga T.
        • et al.
        Novel risk scoring system with preoperative objective parameters gives a good prediction of 1-year mortality in patients with left ventricular assist devices.
        Circ. J. 2012; 76: 1895-1903
        • Lepore J.J.
        • Maroo A.
        • Bigatello L.M.
        • et al.
        Hemodynamic effects of sildenafil in patients with congestive heart failure and pulmonary hypertension: combined administration with inhaled nitric oxide.
        Chest. 2005; 127: 1647-1653
        • Lewis G.D.
        • Lachmann J.
        • Camuso J.
        • et al.
        Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure.
        Circulation. 2007; 115: 59-66
        • Guazzi M.
        • Samaja M.
        • Arena R.
        • et al.
        Long-term use of sildenafil in the therapeutic management of heart failure.
        J. Am. Coll. Cardiol. 2007; 50: 2136-2144
        • Teiss H.D.
        • Grabmaier U.
        • Kreissl N.
        • et al.
        Preconditioning with levosimendan before implantation of left ventricular assist devices.
        Artif. Organs. 2014; 3: 231-234
        • John R.
        • Liao K.
        • Lietz K.
        • et al.
        Experience with the Levitronix CentriMag circulatory support system as a bridge to decision in patients with refractory acute cardiogenic shock and multisystem organ failure.
        J. Thorac. Cardiovasc. Surg. 2007; 134: 351-358
        • Lee S.
        • Kamdar F.
        • Madlon-Kay R.
        • et al.
        Effects of the HeartMate II continuous flow assist device on right ventricular function.
        J. Heart Lung Transplant. 2010; 29: 209-215
        • Akhter S.A.
        • Jeevanandam V.
        Clinical settings for mechanical circulatory support.
        in: Kormos R.L. Miller L.W. Mechanical Circulatory Support: A Companion to Braunwald's Heart Disease. Elsevier Saunders, Philadelphia2012: 118-127
        • Noly P.-E.
        • Kirsch M.
        • Quessard A.
        • et al.
        Temporary right ventricular support following left ventricular assist device implantation: a comparison of two techniques.
        Interact. Cardiovasc. Thorac. Surg. 2014; 19: 49-55
        • Cleveland Jr., J.C.
        • Naftel D.C.
        • Reece T.B.
        • et al.
        Survival after biventricular assist device implantation: an analysis of the Interagency Registry for Mechanical Circulatory Support data base.
        J. Heart Transplant. 2011; 30: 862-869
        • Takeda K.
        • Naka J.
        • Yang J.A.
        • et al.
        Timing of temporary right ventricular assist device insertion for severe right heart failure after left ventricular assist device implantation.
        ASAIO J. 2013; 59: 564-569
        • Lazar J.F.
        • Swartz M.F.
        • Schiralli M.P.
        • Schneider M.
        • et al.
        Survival after left ventricular assist device with and without temporary right ventricular support.
        Ann. Thorac. Surg. 2013; 6: 2155-2159
        • Fitzpatrick III, J.R.
        • Frederick J.R.
        • Hiesinger W.
        • et al.
        Early planned institution of bi-ventricular circulatory support results in improved outcome compared with delayed conversion of a left ventricular assist device to a biventricular assist device.
        J. Thorac. Cardiovasc. Surg. 2009; 137: 971-977
        • Slaughter M.S.
        • Rogers J.G.
        • Milano C.A.
        • et al.
        Advanced heart failure treated with continuous-flow left ventricular assist devices.
        N. Engl. J. Med. 2009; 361: 2241-2251
        • Haneya A.
        • Philipp A.
        • Puehler Th.
        • et al.
        Temporary percutaneous right ventricular support using a centrifugal pump in patients with postoperative acute refractory right ventricular failure after left ventricular assist device implantation.
        Eur. J. Cardiol. Thorac. Surg. 2012; 41: 219-223
        • Slaughter M.S.
        • Pagani F.D.
        • Rogers J.G.
        • et al.
        Clinical management of continuous-flow left ventricular assist devices in advanced heart failure.
        J. Heart Lung Transplant. 2010; 29: S1-S39
        • Loforte A.
        • Stepanenko A.
        • Potapov E.V.
        • et al.
        Temporary right ventricular mechanical support in high risk left ventricular assist device recipients versus permanent biventricular or total artificial heart support.
        Artif. Organs. 2013; 37: 523-530
        • Scherer M.
        • Sirat A.S.
        • Moritz A.
        • Martens S.
        Extracorporeal membrane oxygenation as preoperative right ventricular support in patients with biventricular failure undergoing left ventricular assist device implantation.
        Eur. J. Cardiothorac. Surg. 2011; 39: 339-344
        • Tsukui H.
        • Teutenberg J.J.
        • Murali S.
        • et al.
        Biventricular assist device utilization for patients with morbid congestive heart failure: a justifiable strategy.
        Circulation. 2005; 112: 165-172
        • Mandarino W.A.
        • Morita S.
        • Kormos R.L.
        • et al.
        Quantitation of right ventricular shape changes after left ventricular assist device implantation.
        ASAIO J. 1992; 3: M228-M231
        • Wagner F.
        • Dandel M.
        • Günther G.
        • et al.
        Nitric oxide inhalation in the treatment of right ventricular dysfunction following left ventricular assist device implantation.
        Circulation. 1997; 96 (II-291-6)
        • Potapov E.
        • Meyer D.
        • Swaminathan M.
        • et al.
        Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial.
        J. Heart Lung Transplant. 2011; 30: 870-878
        • Marzec L.N.
        • Ambardekar A.V.
        Preoperative evaluation and perioperative management of right ventricular failure after left ventricular assist device implantation.
        Semin. Cardiothorac. Vasc. Anesth. 2013; 17: 249-261
        • Rao V.
        • Later J.
        • Edwards N.
        • et al.
        Surgical management of valvular disease in patients requiring left ventricular assist device support.
        Ann. Thorac. Surg. 2001; 71: 1448-1453
        • Dembitsky W.
        • Naka Y.
        Intraoperative management issues in mechanical circulatory support.
        in: Kormos R.L. Miller L.W. Mechanical Circulatory Support: A Companion to Braunwald's Heart Disease. Elsevier Saunders, Philadelphia2012: 153-164
        • Potapov E.V.
        • Schweiger M.
        • Stepanenko A.
        • et al.
        Tricuspid valve repair in patients supported with ventricular assist devices.
        ASAIO J. 2011; 57: 363-367
        • Maltais S.
        • Topilsky J.
        • Tchantchaleishvili V.
        • et al.
        Surgical treatment of tricuspid valve insufficiency promotes early reverse remodeling in patients with axial-flow left ventricular assist devices.
        J. Thorac. Cardiovasc. Surg. 2012; 143: 1370-1376
        • Topilsky Y.
        • Hasin T.
        • Oh J.K.
        • et al.
        Echocardiographic variables after left ventricular assist device implantation associated with adverse outcome.
        Circ. Cardiovasc. Imaging. 2011; 4: 648-656
        • Garcia-Alvarez A.
        • Fernandez-Friera L.
        • Lau J.F.
        • et al.
        Evaluation of right ventricular function and postoperative findings using cardiac computed tomography in patients with left ventricular assist devices.
        J. Heart Lung Transplant. 2011; 30: 896-903
        • Teutenberg J.
        • Lockhard K.L.
        Pre-discharge and outpatient management.
        in: Kormos R.L. Miller L.W. Mechanical Circulatory Support: A Companion to Braunwald's Heart Disease. Elsevier Saunders, Philadelphia2012: 183-193
        • Tedfotd R.J.
        • Hemnes A.R.
        • Russell S.D.
        • et al.
        PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support.
        Circ. Heart Fail. 2008; 1: 213-219