Advertisement
Review| Volume 142, ISSUE 1, P2-7, June 25, 2010

Download started.

Ok

The role of red blood cells in the progression and instability of atherosclerotic plaque

Published:November 11, 2009DOI:https://doi.org/10.1016/j.ijcard.2009.10.031

      Abstract

      This review attempts to present a focused summary of selected areas of the rapidly growing knowledge regarding the red blood cells role in atherosclerotic plaque progression and instability. A summary of the characteristics of the erythrocyte membranes is provided, followed by a brief review of the in vitro and in vivo work that has helped clarify their role in atherosclerosis. Mechanisms by which erythrocytes enter the atherosclerotic plaque and contribute to its progression and instability are presented. Finally, some elements that may be clinically important regarding erythrocytes in coronary artery disease are discussed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hellings W.E.
        • Peeters W.
        • Moll F.L.
        • Pasterkamp G.
        From vulnerable plaque to vulnerable patient: the search for biomarkers of plaque destabilization.
        Trends Cardiovasc Med. 2007; 17: 162-171
        • Lee R.T.
        • Libby P.
        The unstable atheroma.
        Arterioscler Thromb Vasc Biol. 1997; 17: 1859-1867
        • Naghani M.
        • Libby P.
        • Falk E.
        • et al.
        From vulnerable plaque to vulnerable patient.
        A call for new definitions and risk assessment strategies: Part I. Circulation. 2003; 108: 1664-1672
        • Virmani R.
        • Burke A.P.
        • Farb A.
        • Kolodgie F.D.
        Pathology of the vulnerable plaque.
        J Am Coll Cardiol. 2006; 47: C13-C18
        • Moreno P.
        • Purushothaman K.R.
        • Sirol M.
        • Levy A.P.
        • Fuster V.
        Neovascularization in human atherosclerosis.
        Circulation. 2006; 113: 2245-2252
        • Virmani R.
        • Kolodgie F.D.
        • Burke A.P.
        • et al.
        Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage.
        Arterioscler Thromb Vasc Biol. 2005; 25: 2054-2061
        • Kolodgie F.D.
        • Gold H.K.
        • Burke A.P.
        • et al.
        Intraplaque hemorrhage and progression of coronary atheroma.
        N Engl J Med. 2003; 349: 2316-2325
        • Imoto K.
        • Hiro T.
        • Fujii T.
        • et al.
        Longitudinal structural determinants of atherosclerotic plaque vulnerability: a computational analysis of stress distribution using vessel models and three-dimensional intravascular ultrasound imaging.
        J Am Coll Cardiol. 2005; 46: 1507-1515
        • Gold J.C.
        • Phillips M.C.
        Effects of membrane lipid composition on the kinetics of cholesterol exchange between lipoproteins and different species of red blood cells.
        Biochim Biophys Acta. 1990; 1027: 85-92
        • Yeagle P.L.
        Cholesterol and the cell membrane.
        Biochim Biophys Acta. 1985; 822: 267-287
        • London I.M.
        • Schwartz H.
        Erythrocyte metabolism. The metabolic behavior of the cholesterol of human erythrocytes.
        J Clin Invest. 1953; 32: 1248-1252
        • Schick B.P.
        • Schick P.K.
        Cholesterol exchange in platelets, erythrocytes, and megakaryocytes.
        Biochim Biophys Acta. 1985; 833: 281-290
        • Gottlieb M.H.
        Rates of cholesterol exchange between human erythrocytes and plasma lipoproteins.
        Biochim Biophys Acta. 1980; 600: 530-541
        • Quarfordt S.H.
        • Hilderman H.L.
        Quantitation of the in vitro free cholesterol exchange of human red cells and lipoproteins.
        J Lipid Res. 1970; 11: 528-535
        • Rothblat G.H.
        • Arbogast L.Y.
        • Ray E.K.
        Stimulation of esterified cholesterol accumulation in tissue culture cells exposed to high density lipoproteins enriched in free cholesterol.
        J Lipid Res. 1978; 19: 350-358
        • Ohvo-Rekila H.
        • Ramstedt B.
        • Leppimaki P.
        • Slotte P.
        Cholesterol interactions with phospholipids in membranes.
        Prog Lipid Res. 2002; 41: 66-97
        • Chen H.
        • Born E.
        • Mathur S.N.
        • Field F.J.
        Cholesterol and sphingomyelin syntheses are regulated independently in cultured human intestinal cells, CaCo-2: role of membrane cholesterol and sphingomyelin content.
        J Lipid Res. 1993; 34: 2159-2167
        • Chen H.
        • Born E.
        • Mathur S.N.
        • Johlin Jr, F.C.
        • Field F.J.
        Sphingomyelin content of intestinal cell membranes regulates cholesterol absorption.
        Biochem J. 1992; 286: 771-777
        • Slotte J.P.
        • Bierman E.L.
        Depletion of plasma –membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts.
        Biochem J. 1988; 250: 653-658
        • Neote K.
        • Darbonne W.
        • Ogez J.
        • Horuk R.
        • Schall T.J.
        Identification of a promiscuous inflammatory peptide receptor on the surface of red blood cells.
        J Biol Chem. 1993; 268: 12247-12249
        • Neote K.
        • Malk J.Y.
        • Kolakowski L.F.
        • Schall T.J.
        Functional and biochemical analysis of the cloned Duffy antigen : identity with the red blood cell chemokine receptor.
        Blood. 1994; 84: 44-52
        • Oliver M.F.
        • Davies M.J.
        The atheromatous lipid core.
        Eur. Heart J. 1998; 19: 16-18
        • Felton C.V.
        • Crook D.
        • Davies M.J.
        • Oliver M.F.
        Relation of plaque lipid composition and morphology to the stability of human aortic plaques.
        Arterioscler Thromb Vasc Biol. 1997; 17: 1337-1345
        • Tabas I.
        Cholesterol and phospholipid metabolism in macrophages.
        Biochim Biophys Acta. 2000; 1529: 164-174
        • Kolodgie F.D.
        • Burke A.P.
        • Nakazawa G.
        • Cheng Q.
        • Xu X.
        • Virmani R.
        Free cholesterol in atherosclerotic plaques: where does it come from?.
        Curr Opin Lipidol. 2007; 18: 500-507
        • Tabas I.
        Consequences of cellular cholesterol accumulation: basic concepts and physiological implications.
        J Clin Invest. 2002; 110: 905-911
        • Arbustini E.
        • Morbini P.
        • D'Armini A.M.
        • et al.
        Plaque composition in plexogenic and thromboembolic pulmonary hypertension: the critical role of the thrombotic material in pultaceous core formation.
        Heart. 2002; 88: 177-182
        • Lin H.-L.
        • Xu X.-S.
        • Lu H.-X.
        • et al.
        Pathological mechanisms and dose dependency of erythrocyte-induced vulnerability of atherosclerotic plaques.
        J Mol Cell Cardiol. 2007; 43: 272-280
        • Stary H.C.
        • Chandler A.B.
        • Dinsmore R.E.
        • et al.
        A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis.
        Circulation. 1995; 92: 1355-1374
        • Falk E.
        Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis.
        Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J. 1983; 50: 127-134
        • Constantinides P.
        Plaque hemorrhages, their genesis and their role in supra-plaque thrombosis and atherogenesis.
        in: Glacov S Newman WP Schaffer SA Pathobiology of the human atherosclerotic plaque. Springer-Verlag, New York, NY1990: 394-411
        • Kumamoto M.Y.
        • Nakashima Y.
        • Sueishi K.
        Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance.
        Human Pathol. 1995; 26: 450-456
        • Purushothaman KR
        • Fuster V
        • O´Connor WN
        • Moreno PR
        Neovascularization is the most powerful independent predictor for progression to disruption in high risk atherosclerotic plaques.
        J Am Coll Cardiol. 2003; 41: 352-353
        • Moreno P.R.
        • Purushothaman K.R.
        • Fuster V.
        • et al.
        Plaque neovascularization increased in ruptured atherosclerotic lesions of human aorta.
        Implications for plaque vulnerability. Circulation. 2004; 110: 2032-2038
        • Falk E.
        Why do plaques rupture?.
        Circulation. 1992; 86: III30-III42
        • Katz S.S.
        • Shipley G.G.
        • Small D.M.
        Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques.
        J Clin Invest. 1976; 58: 200-211
        • Rapp J.H.
        • Connor W.E.
        • Lin D.S.
        • Inahara T.
        • Porter J.M.
        Lipids of human atherosclerotic plaques and xanthomas: clues to the mechanism of plaque progression.
        J Lipid Res. 1983; 24: 1329-1335
        • Abela G.S.
        • Aziz K.
        Cholesterol crystals rupture biological membranes and human plaques during acute cardiovascular events—a novel insight into plaque rupture by scanning electron microscopy.
        Scanning. 2006; 28: 1-10
        • Kellner-Weibel G.
        • Yancey P.G.
        • Jerome W.G.
        • et al.
        Crystallization of free cholesterol in model macrophage foam cells.
        Arterioscler Thromb Vasc Biol. 1999; 19: 1891-1898
        • Lupu F.
        • Danaricu I.
        • Simionescu N.
        Development of intracellular lipid deposits in the lipid laden cell of atherosclerotic lesions.
        A cytochemical and ultrastructural study. Atheroslcerosis. 1987; 67: 127-142
        • Kellner-Weibel G.
        • Jerome W.G.
        • Small D.M.
        • et al.
        Effects of intracellular free cholesterol accumulation on macrophage viability: a model for foam cell death.
        Arterioscler Thromb Vasc Biol. 1998; 18: 423-431
        • Libby P.
        • Geng Y.J.
        • Aikawa M.
        • et al.
        Macrophages and atherosclerotic plaque stability.
        Curr Opin Lipidol. 1996; 7: 330-335
        • Brown A.J.
        • Jessup W.
        Oxysterols and atherosclerosis.
        Atherosclerosis. 1999; 142: 1-28
        • Tziakas D.N.
        • Chalikias G.K.
        • Stakos D.
        • et al.
        Cholesterol composition of erythrocyte membranes and its association with clinical presentation of coronary artery disease.
        Coron Artery Dis. 2008; 19: 583-590
        • Yuan X.M.
        • Brunk U.T.
        • Olsson A.G.
        Effects of iron- and hemoglobin-loaded human monocyte-derived macrophages on oxidation and uptake of LDL.
        Arterioscler Thromb Vasc Biol. 1995; 15: 1345-1351
        • Yuan X.M.
        • Anders W.L.
        • Olsson A.G.
        • Brunk U.T.
        Iron in human atheroma and LDL oxidation by macrophages following erythrophagocytosis.
        Atherosclerosis. 1996; 124: 61-73
        • Asatryan L.
        • Ziouzenkova O.
        • Duncan R.
        • Sevanian A.
        Heme and lipid peroxides in hemoglobin-modified low-density lipoprotein mediate cell survival and adaptation to oxidative stress.
        Blood. 2003; 102: 1732-1739
        • Kim-Shapiro D.B.
        • Schechter A.N.
        • Gladwin M.T.
        Unravelling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics.
        Arterioscler Thromb Vasc Biol. 2006; 26: 697-705
        • Moreno PR
        • Purushothaman KR
        • Purushothaman M
        Haptoglobin genotype is a major determinant of the amount of iron in the human atherosclerotic plaque.
        J Am Coll Cardiol. 2008; 52: 1049-1051
        • Levy A.P.
        • Levy J.E.
        • Kalet-Litman S.
        • et al.
        Haptoglobin genotype is a determinant of iron, lipid peroxidation, and macrophage accumulation in the atherosclerotic plaque.
        Arterioscler Thromb Vasc Biol. 2007; 27: 134-140
        • Darbonne W.C.
        • Rice G.C.
        • Mohler M.A.
        • Hebert C.A.
        • Valente A.J.
        • Baker J.B.
        Red blood cells are a sink for interleukin-8, a leukocyte chemotaxin.
        J Clin Invest. 1991; 88: 1362-1369
        • Kockx M.M.
        • Cromheeke K.M.
        • Knaapen M.W.M.
        • et al.
        Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2003; 23: 440-446
        • Sambrano G.R.
        • Parthasarathy S.
        • Steinberg D.
        Recognition of oxidatevely damaged erythrocytes by a macrophage receptor with specificity for oxidized low density lipoprotein.
        Proc Natl Acad Sci USA. 1994; 91: 3265-3269
        • Beppu M.
        • Hayashi T.
        • Hasegawa T.
        • Kikugawa K.
        Recognition of sialosaccharide chains of glycophorin on damaged erythrocytes by macrophage scavenger receptors.
        Biochim Biophys Acta. 1995; 1268: 9-19
        • Loegering D.J.
        • Raley M.J.
        • Reho T.A.
        • Eaton J.W.
        Macrophage dysfunction following the phagocytosis of IgG-coated erythrocytes: production of lipid peroxidation products.
        J. Leukoc Biol. 1996; 59: 357-362
        • Tziakas D.
        • Kaski J.C.
        • Chalikias G.K.
        • et al.
        Total cholesterol content of erythrocyte membranes is increased in patients with acute coronary syndrome.
        J Am Coll Cardiol. 2007; 49: 2081-2089
        • Tziakas D.N.
        • Chalikias G.K.
        • Tentes I.K.
        • et al.
        Interleukin-8 is increased in the membrane of circulating erythrocytes in patients with acute coronary syndrome.
        Eur Heart J. 2008; 29: 2713-2722
        • Dietzen D.J.
        • Page K.L.
        • Tetzloff T.A.
        • Bohrer A.
        • Turk J.
        Inhibition of 3-hydroxy-3methylglutaryl coenzyme A (HMG CoA) reductase blunts factor VIIa/tissue factor and prothrombinase acitivities via effects on membrane phosphatidylserine.
        Arterioscler Thromb Vasc Biol. 2007; 27: 690-696
        • Coats A.J.
        Ethical authorship and publishing.
        Int J Cardiol. 2009; 131: 149-150