Advertisement
Research Article| Volume 167, ISSUE 4, P1298-1304, August 20, 2013

A potent soluble epoxide hydrolase inhibitor, t-AUCB, acts through PPARγ to modulate the function of endothelial progenitor cells from patients with acute myocardial infarction

      Abstract

      Background

      Epoxyeicosatrienoic acids (EETs) are natural angiogenic mediators regulated by soluble epoxide hydrolase (sEH). Inhibitors of sEH can stabilize EETs levels and were reported to reduce atherosclerosis and inhibit myocardial infarction in animal models. In this work, we investigated whether increasing EETs with the sEH inhibitor t-AUCB would increase angiogenesis related function in endothelial progenitor cells (EPCs) from patients with acute myocardial infarction (AMI).

      Methods and results

      EPCs were isolated from 50 AMI patients and 50 healthy subjects (control). EPCs were treated with different concentrations of t-AUCB for 24 h with or without peroxisome proliferator activated receptor γ (PPARγ) inhibitor GW9662. Migration of EPCs was assayed in trans-well chambers. Angiogenesis assays were performed using a Matrigel-Matrix in vitro model. The expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1α (HIF-1α) mRNA and protein in EPCs was measured by real-time PCR or Western blot, respectively. Also, the concentration of EETs in the culture supernatant was detected by ELISA.
      The activity of EPCs in the AMI patient group was reduced compared to healthy controls. Whereas increasing EET levels with t-AUCB promoted a dose dependent angiogenesis and migration in EPCs from AMI patients. Additionally, the t-AUCB dose dependently increased the expression of the angiogenic factors VEGF and HIF-α. Lastly, we provide evidence that these effects were PPARγ dependent.

      Conclusion

      The results demonstrate that the sEH inhibitor positively modulated the functions of EPCs in patients with AMI through the EETs–PPARγ pathway. The present study suggests the potential utility of sEHi in the therapy of ischemic heart disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yin A.H.
        • Miraglia S.
        • Zanjani E.D.
        • Almeida-Porada G.
        • Ogawa M.
        • Leary A.G.
        • et al.
        AC133, a novel marker for human hematopoietic stem and progenitor cells.
        Blood. 1997; 90: 5002-5012
        • Hung H.S.
        • Shyu W.C.
        • Tsai C.H.
        • Hsu S.H.
        • Lin S.Z.
        • Tongers J.
        • et al.
        Role of endothelial progenitor cells during ischemia-induced vasculogenesis and collateral formation.
        Microvasc Res. 2010; 79: 200-206
        • Hung H.S.
        • Shyu W.C.
        • Tsai C.H.
        • Hsu S.H.
        • Lin S.Z.
        Transplantation of endothelial progenitor cells as therapeutics for cardiovascular diseases.
        Cell Transplant. 2009; 18: 1003-1012
        • Ingraham R.H.
        • Gless R.D.
        • Lo H.Y.
        Soluble epoxide hydrolase inhibitors and their potential for treatment of multiple pathologic conditions.
        Curr Med Chem. 2011; 18: 587-603
        • Simpkins A.N.
        • Rudic R.D.
        • Roy S.
        • Tsai H.J.
        • Hammock B.D.
        • Imig J.D.
        Soluble epoxide hydrolase inhibition modulates vascular remodeling.
        Am J Physiol Heart Circ Physiol. 2010; 298: H795-H806
        • Zhang L.N.
        • Vincelette J.
        • Cheng Y.
        • Mehra U.
        • Chen D.
        • Anandan S.K.
        • et al.
        Inhibition of soluble epoxide hydrolase attenuated atherosclerosis, abdominal aortic aneurysm formation, and dyslipidemia.
        Arterioscler Thromb Vasc Biol. 2009; 29: 1265-1270
        • Spector A.A.
        • Fang X.
        • Snyder G.D.
        • Weintraub N.L.
        Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function.
        Prog Lipid Res. 2004; 43: 55-90
        • Zeldin D.C.
        • Kobayashi J.
        • Falck J.R.
        • Winder B.S.
        • Hammock B.D.
        • Snapper J.R.
        • et al.
        Regio- and enantiofacial selectivity of epoxyeicosatrienoic acid hydration by cytosolic epoxide hydrolase.
        J Biol Chem. 1993 Mar 25; 268: 6402-6407
        • Spector A.A.
        • Norris A.W.
        Action of epoxyeicosatrienoic acids on cellular function.
        Am J Physiol Cell Physiol. 2007; 292: C996-C1012
        • Newman J.W.
        • Morisseau C.
        • Hammock B.D.
        Epoxide hydrolases: their roles and interactions with lipid metabolism.
        Prog Lipid Res. 2005; 44: 1-51
        • Miller A.W.
        • Dimitropoulou C.
        • Han G.
        • White R.E.
        • Busija D.W.
        • Carrier G.O.
        Epoxyeicosatrienoic acid-induced relaxation is impaired in insulin resistance.
        Am J Physiol Heart Circ Physiol. 2001; 281: H1524-H1531
        • Luo P.
        • Chang H.H.
        • Zhou Y.
        • Zhang S.
        • Hwang S.H.
        • Morisseau C.
        • et al.
        Inhibition or deletion of soluble epoxide hydrolase prevents hyperglycemia, promotes insulin secretion, and reduces islet apoptosis.
        J Pharmacol Exp Ther. 2010; 334: 430-438
        • Bellien J.
        • Joannides R.
        • Richard V.
        • Thuillez C.
        Modulation of cytochrome-derived epoxyeicosatrienoic acids pathway: a promising pharmacological approach to prevent endothelial dysfunction in cardiovascular diseases?.
        Pharmacol Ther. 2011 Jul; 131: 1-17
        • Chiamvimonvat N.
        • Ho C.M.
        • Tsai H.J.
        • Hammock B.D.
        The soluble epoxide hydrolase as a pharmaceutical target for hypertension.
        J Cardiovasc Pharmacol. 2007; 50: 225-237
        • Oguro A.
        • Fujita N.
        • Imaoka S.
        Regulation of soluble epoxide hydrolase (sEH) in mice with diabetes: high glucose suppresses sEH expression.
        Drug Metab Pharmacokinet. 2009; 24: 438-445
        • Chaudhary K.R.
        • Abukhashim M.
        • Hwang S.H.
        • Hammock B.D.
        • Seubert J.M.
        Inhibition of soluble epoxide hydrolase by trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid is protective against ischemia–reperfusion injury.
        J Cardiovasc Pharmacol. 2010; 55: 67-73
        • Qiu H.
        • Li N.
        • Liu J.Y.
        • Harris T.R.
        • Hammock B.D.
        • Chiamvimonvat N.
        Soluble epoxide hydrolase inhibitors and heart failure.
        Cardiovasc Ther. 2010; : 23
        • Xu D.
        • Li N.
        • He Y.
        • Timofeyev V.
        • Lu L.
        • Tsai H.J.
        • et al.
        Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors.
        Proc Natl Acad Sci U S A. 2006; 103: 18733-18738
        • Imig J.D.
        • Hammock B.D.
        Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases.
        Nat Rev Drug Discov. 2009; 8: 794-805
        • Li N.
        • Liu J.Y.
        • Timofeyev V.
        • Qiu H.
        • Hwang S.H.
        • Tuteja D.
        • et al.
        Beneficial effects of soluble epoxide hydrolase inhibitors in myocardial infarction model: insight gained using metabolomic approaches.
        J Mol Cell Cardiol. 2009; 47: 835-845
        • Hwang S.H.
        • Tsai H.J.
        • Liu J.Y.
        • Morisseau C.
        • Hammock B.D.
        Orally bioavailable potent soluble epoxide hydrolase inhibitors.
        J Med Chem. 2007; 50: 3825-3840
        • Schroeter M.R.
        • Leifheit M.
        • Sudholt P.
        • Heida N.M.
        • Dellas C.
        • Rohm I.
        • et al.
        Leptin enhances the recruitment of endothelial progenitor cells into neointimal lesions after vascular injury by promoting integrin-mediated adhesion.
        Circ Res. 2008; 103: 536-544
        • Qian C.
        • Tio R.A.
        • Roks A.J.
        • Boddeus K.M.
        • Harmsen M.C.
        • van Gilst W.H.
        • et al.
        A promising technique for transplantation of bone marrow-derived endothelial progenitor cells into rat heart.
        Cardiovasc Pathol. 2007 May–Jun; 16: 127-135
        • Rafii S.
        • Lyden D.
        Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration.
        Nat Med. 2003 Jun; 9: 702-712
        • Dimmeler S.
        • Aicher A.
        • Vasa M.
        • Mildner-Rihm C.
        • Adler K.
        • Tiemann M.
        • et al.
        MG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway.
        J Clin Invest. 2001 Aug; 108: 391-397
        • Liu Y.
        • Zhang Y.
        • Schmelzer K.
        • Lee T.S.
        • Fang X.
        • Zhu Y.
        • et al.
        The antiinflammatory effect of laminar flow: the role of PPARgamma, epoxyeicosatrienoic acids, and soluble epoxide hydrolase.
        Proc Natl Acad Sci U S A. 2005; 102: 16747-16752
        • Lee M.
        • Aoki M.
        • Kondo T.
        • Kobayashi K.
        • Okumura K.
        • Komori K.
        • et al.
        Therapeutic angiogenesis with intramuscular injection of low-dose recombinant granulocyte-colony stimulating factor.
        Arterioscler Thromb Vasc Biol. 2005 Dec; 25: 2535-2541
        • Cid M.C.
        • Hernández-Rodríguez J.
        • Esteban M.J.
        • Cebrián M.
        • Gho Y.S.
        • Font C.
        • et al.
        Tissue and serum angiogenic activity is associated with low prevalence of ischemic complications in patients with giant-cell arteritis.
        Circulation. 2002 Sep 24; 106: 1664-1671
        • Jujo K.
        • Ii M.
        • Losordo D.W.
        Endothelial progenitor cells in neovascularization of infarcted myocardium.
        J Mol Cell Cardiol. 2008; 45: 530-544
        • Albiero M.
        • Menegazzo L.
        • Avogaro A.
        • Fadini G.P.
        Pharmacologic targeting of endothelial progenitor cells [J].
        Cardiovasc Hematol Disord Drug Targets. 2010; 10: 16-32
        • Werner N.
        • Kosiol S.
        • Schiegl T.
        • Ahlers P.
        • Walenta K.
        • Link A.
        • et al.
        Circulating endothelial progenitor cells and cardiovascular outcomes.
        N Engl J Med. 2005 Sep 8; 353: 999-1007
        • Li Calzi S.
        • Neu M.B.
        • Shaw L.C.
        • Kielczewski J.L.
        • Moldovan N.I.
        • Grant M.B.
        EPCs and pathological angiogenesis: when good cells go bad.
        Microvasc Res. 2010; 79: 207-216
        • Hristov M.
        • Weber C.
        Endothelial progenitor cells in vascular repair and remodeling.
        Pharmacol Res. 2008; 58: 148-151
        • Zampetaki A.
        • Kirton J.P.
        • Xu Q.
        Vascular repair by endothelial progenitor cells.
        Cardiovasc Res. 2008; 78: 413-421
        • Jackson K.A.
        • Majka S.M.
        • Wang H.
        • Pocius J.
        • Hartley C.J.
        • Majesky M.W.
        Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells.
        J Clin Invest. 2001; 107: 1395-1402
        • Gill M.
        • Dias S.
        • Hattori K.
        • Rivera M.L.
        • Hicklin D.
        • Witte L.
        Vascular trauma induces rapid but transient mobilization of VEGFR2+ AC331+ endothelial precursor cells.
        Circ Res. 2001; 88: 167-174
        • Shintani S.
        • Murohara T.
        • Ikeda H.
        • Ueno T.
        • Honma T.
        • Katoh A.
        Mobilization of endothelial progenitor cells in patients with acute myocardial infarction.
        Circulation. 2001; 103: 2776-2779
        • Wojakowiski W.
        • Tendera M.
        • Michalowska A.
        • Majka M.
        • Kucia M.
        • Maslsnkiewicz K.
        Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction.
        Circulation. 2004; 110: 3213-3220
        • Massa M.
        • Rosti V.
        • Ferrario M.
        • Campanelli R.
        • Ramajoli I.
        • Rosso R.
        Increased circulating hematopoietic and endothelial progenitorcells in the early phase of acute myocardial infarction.
        Blood. 2005; 105: 199-206
        • Liguori A.
        • Fiorito C.
        • Balestrieri M.L.
        • Crimi E.
        • Bruzzese G.
        • Williams-Ignarro S.
        • et al.
        Functional impairment of hematopoietic progenitor cells in patients with coronary heart disease.
        Eur J Haematol. 2008; 80: 258-264
        • Briguori C.
        • Testa U.
        • Riccioni R.
        • Colombo A.
        • Petrucci E.
        • Condorelli G.
        • et al.
        Correlations between progression of coronary artery disease and circulating endothelial progenitor cells.
        FASEB J. 2010; 24: 1981-1988
        • Vasa M.
        • Fichtlscherer S.
        • Aicher A.
        • Adler K.
        • Urbich C.
        • Martin H.
        • et al.
        Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease.
        Circ Res. 2001 Jul 6; 89: E1-E7
        • Chang L.T.
        • Yuen C.M.
        • Sun C.K.
        • Wu C.J.
        • Sheu J.J.
        • Chua S.
        • et al.
        Role of stromal cell-derived factor-1alpha, level and value of circulating interleukin-10 and endothelial progenitor cells in patients with acute myocardial infarction undergoing primary coronary angioplasty.
        Circ J. 2009 Jun; 73: 1097-1104
        • Baran C.
        • Durdu S.
        • Dalva K.
        • Zaim C.
        • Dogan A.
        • Ocakoglu G.
        • et al.
        Effects of preoperative short term use of atorvastatin on endothelial progenitor cells after coronary surgery: a randomized, controlled trial.
        Stem Cell Rev. 2012 Sept; 8: 963-971
        • Chang H.W.
        • Leu S.
        • Sun C.K.
        • Hang C.L.
        • Youssef A.A.
        • Hsieh Y.K.
        • et al.
        Level and value of circulating endothelial progenitor cells in patients with acute myocardial infarction undergoing primary coronary angioplasty: in vivo and in vitro studies.
        Transl Res. 2010 Oct; 156: 251-263
        • Min T.Q.
        • Zhu C.J.
        • Xiang W.X.
        • Hui Z.J.
        • Peng S.Y.
        Improvement in endothelial progenitor cells from peripheral blood by ramipril therapy in patients with stable coronary artery disease.
        Cardiovasc Drugs Ther. 2004 May; 18: 203-209
        • Kito T.
        • Shibata R.
        • Kondo M.
        • Yamamoto T.
        • Suzuki H.
        • Ishii M.
        • et al.
        Nifedipine ameliorates ischemia-induced revascularization in diet-induced obese mice.
        Am J Hypertens. 2012 Apr; 25: 401-406
        • Dong L.
        • Kang L.
        • Ding L.
        • Chen Q.
        • Bai J.
        • Gu R.
        • et al.
        Insulin modulates ischemia-induced endothelial progenitor cell mobilization and neovascularization in diabetic mice.
        Microvasc Res. 2011 Nov; 82: 227-236
        • Smythe J.
        • Fox A.
        • Fisher N.
        • Frith E.
        • Harris A.L.
        • Watt S.M.
        Measuring angiogenic cytokines, circulating endothelial cells, and endothelial progenitor cells in peripheral blood and cord blood: VEGF and CXCL12 correlate with the number of circulating endothelial progenitor cells in peripheral blood.
        Tissue Eng Part C Methods. 2008; 14: 59-67
        • Dzau V.J.
        • Gnecchi M.
        • Pachori A.S.
        • Morello F.
        • Melo L.G.
        Therapeutic potential of endothelial progenitor cells in cardiovascular diseases.
        Hypertension. 2005 Jul; 46: 7-18
        • Losordo D.W.
        • Dimmeler S.
        Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies.
        Circulation. 2004 Jun 8; 109: 2692-2697
        • Mac Gabhann F.
        • Qutub A.A.
        • Annex B.H.
        • Popel A.S.
        Systems biology of pro-angiogenic therapies targeting the VEGF system.
        Wiley Interdiscip Rev Syst Biol Med. 2010 Nov-Dec; 2: 694-707
        • Yu J.X.
        • Huang X.F.
        • Lv W.M.
        • Ye C.S.
        • Peng X.Z.
        • Zhang H.
        • et al.
        Combination of stromal-derived factor-1alpha and vascular endothelial growth factor gene-modified endothelial progenitor cells is more effective for ischemic neovascularization.
        J Vasc Surg. 2009; 50: 608-616
        • Jiang M.
        • Wang B.
        • Wang C.
        • He B.
        • Fan H.
        • Guo T.B.
        • et al.
        Angiogenesis by transplantation of HIF-1 alpha modified EPCs into ischemic limbs.
        J Cell Biochem. 2008; 103: 321-334
        • Hoenig M.R.
        • Bianchi C.
        • Sellke F.W.
        Hypoxia inducible factor-1 alpha, endothelial progenitor cells, monocytes, cardiovascular risk, wound healing, cobalt and hydralazine: a unifying hypothesis.
        Curr Drug Targets. 2008; 9: 422-435
        • Nithipatikom K.
        • Gross G.J.
        Review article: epoxyeicosatrienoic acids: novel mediators of cardioprotection.
        J Cardiovasc Pharmacol Ther. 2010; 15: 112-119
        • Spector A.A.
        Arachidonic acid cytochrome P450 epoxygenase pathway.
        J Lipid Res. 2009; 50: S52-S56
        • Webler A.C.
        • Michaelis U.R.
        • Popp R.
        • Barbosa-Sicard E.
        • Murugan A.
        • Falck J.R.
        • et al.
        Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis.
        Am J Physiol Cell Physiol. 2008; 295: C1292-C1301
        • Chen D.
        • Whitcomb R.
        • Macintyre E.
        • Tran V.
        • Do Z.N.
        • Sabry J.
        • et al.
        Pharmacokinetics and pharmacodynamics of AR9281, an inhibitor of soluble epoxide hydrolase, in single- and multiple-dose studies in healthy human subjects.
        J Clin Pharmacol. 2012 Mar; 52: 319-328