Advertisement

Activated p300 acetyltransferase activity modulates aortic valvular calcification with osteogenic transdifferentiation and downregulation of Klotho

  • Shao-Jung Li
    Affiliations
    Grarduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

    Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
    Search for articles by this author
  • Yu-Hsun Kao
    Correspondence
    Corresponding authors at: Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan, 250 Wu-Xing Street, Taipei 11031, Taiwan.
    Affiliations
    Grarduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

    Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
    Search for articles by this author
  • Cheng-Chih Chung
    Affiliations
    Grarduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

    Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
    Search for articles by this author
  • Wei-Yu Chen
    Affiliations
    Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

    Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
    Search for articles by this author
  • Wan-li Cheng
    Affiliations
    Grarduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
    Search for articles by this author
  • Yi-Jen Chen
    Correspondence
    Corresponding authors at: Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taiwan, 250 Wu-Xing Street, Taipei 11031, Taiwan.
    Affiliations
    Grarduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

    Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
    Search for articles by this author
Published:January 05, 2017DOI:https://doi.org/10.1016/j.ijcard.2017.01.005

      Abstract

      Background

      The calcific aortic valve (AV) disease is a common disease with the unclear mechanism, and optimal pharmacological treatment remains unavailable. Epigenetic modulation by histone acetyltransferase (HAT) plays a critical role in osteogenic transdifferentiation and atherosclerosis. The purposes of this study were to investigate whether HAT contributes to the pathophysiology of AV calcification and assess the therapeutic potential of HAT inhibition.

      Methods

      Porcine valvular interstitial cells (VICs) were treated with osteogenic medium (10 ng/mL of tumor necrosis factor-α and 4 mmol/L of high phosphate) for 7 days. We analyzed the RNA and protein expression of myofibroblastic (α-SMA, vimentin, collagen 1A1, collagen 3, Egr-1, MMP2, MMP9) and osteoblastic markers (osteocalcin and alkaline phosphatase) in VICs, and studied the effects of a p300 inhibitor (C646, 10 μmol/L) on calcification (Alizarin Red S staining), osteogenesis, HAT activity, the mitogen-activated protein kinase (MAPK) and Akt pathway, and Klotho expression on VICs.

      Results

      Osteogenic medium treated VICs had higher expressions of osteocalcin, alkaline phosphatase and acetylated lysine-9 of histone H3 (ac-H3K9) than control cells. C646 attenuated osteogenesis of VICs with simultaneous inhibition of the HAT activity of p300. There was neither significant increase of p300 protein nor p300 transcript during the osteogenesis process. Additionally, osteogenic medium treated VICs decreased the expression of Klotho, which is attenuated by C646.

      Conclusions

      Activated HAT activity of p300 modulates AV calcification through osteogenic transdifferentiation of VICs with Klotho modulation. P300 inhibition is a potential therapeutic target for AV calcification.

      Abbreviations:

      ac-H3K9 (histone acetylation at histone H3 Lys 9), AV (aortic valve), CAVD (calcific aortic valve disease), ECM (extracellular matrix), Egr-1 (early growth response-1), ERK (extracellular signal-regulated kinase), HAT (histone acetyltransferase), HDAC (histone deacetylase), HP (high phosphate), IκB (inhibitor of kappa B), MAPK (mitogen-activated protein kinase), MMP (matrix metalloproteinase), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), p300 (EP300 or E1A binding protein p300 (adenovirus early region 1A)), CBP or CREBBP (CREB (cAMP response element-binding protein) -binding protein), Pi (phosphate), TGF (transforming growth factor), TNAP (tissue non-specific alkaline phosphatases), TNF (tumor necrosis factor), RXR (retinoid-x receptor), VIC (valve interstitial cell), VDR (vitamin D (1,25-dihydroxy vitamin D3) receptor), VDRE (vitamin D response element)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rajamannan N.M.
        • Evans F.J.
        • Aikawa E.
        • Grande-Allen K.J.
        • Demer L.L.
        • Heistad D.D.
        • Simmons C.A.
        • Masters K.S.
        • Mathieu P.
        • O'Brien K.D.
        • Schoen F.J.
        • Towler D.A.
        • Yoganathan A.P.
        • Otto C.M.
        Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease-2011 update.
        Circulation. 2011; 124: 1783-1791
        • Lindman B.R.
        • Bonow R.O.
        • Otto C.M.
        Current management of calcific aortic stenosis.
        Circ. Res. 2013; 113: 223-237
        • Jaquiss R.D.
        Bioprosthetic aortic valve replacement in the young: a cautionary tale.
        Circulation. 2014; 130: 7-9
        • Ikee R.
        • Honda K.
        • Ishioka K.
        • Oka M.
        • Maesato K.
        • Moriya H.
        • Hidaka S.
        • Ohtake T.
        • Kobayashi S.
        Differences in associated factors between aortic and mitral valve calcification in hemodialysis.
        Hypertens. Res. 2010; 33: 622-626
        • Guerraty M.A.
        • Chai B.
        • Hsu J.Y.
        • Ojo A.O.
        • Gao Y.
        • Yang W.
        • Keane M.G.
        • Budoff M.J.
        • Mohler 3rd, E.R.
        • Investigators C.S.
        Relation of aortic valve calcium to chronic kidney disease (from the Chronic Renal Insufficiency Cohort Study).
        Am. J. Cardiol. 2015; 115: 1281-1286
        • Shanahan C.M.
        • Crouthamel M.H.
        • Kapustin A.
        • Giachelli C.M.
        Arterial calcification in chronic kidney disease: key roles for calcium and phosphate.
        Circ. Res. 2011; 109: 697-711
        • Yu Z.
        • Seya K.
        • Daitoku K.
        • Motomura S.
        • Fukuda I.
        • Furukawa K.
        Tumor necrosis factor-alpha accelerates the calcification of human aortic valve interstitial cells obtained from patients with calcific aortic valve stenosis via the BMP2-Dlx5 pathway.
        J. Pharmacol. Exp. Ther. 2011; 337: 16-23
        • Osta B.
        • Benedetti G.
        • Miossec P.
        Classical and paradoxical effects of TNF-alpha on bone homeostasis.
        Front. Immunol. 2014; 5: 48
        • Rattazzi M.
        • Iop L.
        • Faggin E.
        • Bertacco E.
        • Zoppellaro G.
        • Baesso I.
        • Puato M.
        • Torregrossa G.
        • Fadini G.P.
        • Agostini C.
        • Gerosa G.
        • Sartore S.
        • Pauletto P.
        Clones of interstitial cells from bovine aortic valve exhibit different calcifying potential when exposed to endotoxin and phosphate.
        Arterioscler. Thromb. Vasc. Biol. 2008; 28: 2165-2172
        • El Husseini D.
        • Boulanger M.C.
        • Fournier D.
        • Mahmut A.
        • Bosse Y.
        • Pibarot P.
        • Mathieu P.
        High expression of the Pi-transporter SLC20A1/Pit1 in calcific aortic valve disease promotes mineralization through regulation of Akt-1.
        PLoS One. 2013; 8e53393
        • Kraus W.L.
        • Kadonaga J.T.
        p300 and estrogen receptor cooperatively activate transcription via differential enhancement of initiation and reinitiation.
        Genes Dev. 1998; 12: 331-342
        • Vo N.
        • Goodman R.H.
        CREB-binding protein and p300 in transcriptional regulation.
        J. Biol. Chem. 2001; 276: 13505-13508
        • Chen L.F.
        • Greene W.C.
        Shaping the nuclear action of NF-kappaB.
        Nat. Rev. Mol. Cell Biol. 2004; 5: 392-401
        • Zhao G.
        • Xu M.J.
        • Zhao M.M.
        • Dai X.Y.
        • Kong W.
        • Wilson G.M.
        • Guan Y.
        • Wang C.Y.
        • Wang X.
        Activation of nuclear factor-kappa B accelerates vascular calcification by inhibiting ankylosis protein homolog expression.
        Kidney Int. 2012; 82: 34-44
        • Stein G.S.
        • Lian J.B.
        • van Wijnen A.J.
        • Stein J.L.
        • Montecino M.
        • Javed A.
        • Zaidi S.K.
        • Young D.W.
        • Choi J.Y.
        • Pockwinse S.M.
        Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression.
        Oncogene. 2004; 23: 4315-4329
        • Ogryzko V.V.
        • Schiltz R.L.
        • Russanova V.
        • Howard B.H.
        • Nakatani Y.
        The transcriptional coactivators p300 and CBP are histone acetyltransferases.
        Cell. 1996; 87: 953-959
        • Bowers E.M.
        • Yan G.
        • Mukherjee C.
        • Orry A.
        • Wang L.
        • Holbert M.A.
        • Crump N.T.
        • Hazzalin C.A.
        • Liszczak G.
        • Yuan H.
        • Larocca C.
        • Saldanha S.A.
        • Abagyan R.
        • Sun Y.
        • Meyers D.J.
        • Marmorstein R.
        • Mahadevan L.C.
        • Alani R.M.
        • Cole P.A.
        Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor.
        Chem. Biol. 2010; 17: 471-482
        • Comer B.S.
        • Ba M.
        • Singer C.A.
        • Gerthoffer W.T.
        Epigenetic targets for novel therapies of lung diseases.
        Pharmacol. Ther. 2015; 147: 91-110
        • Speer M.Y.
        • Yang H.Y.
        • Brabb T.
        • Leaf E.
        • Look A.
        • Lin W.L.
        • Frutkin A.
        • Dichek D.
        • Giachelli C.M.
        Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries.
        Circ. Res. 2009; 104: 733-741
        • Fernandez-Martin J.L.
        • Kurian S.
        • Farmer P.
        • Nanes M.S.
        Tumor necrosis factor activates a nuclear inhibitor of vitamin D and retinoid-X receptors.
        Mol. Cell. Endocrinol. 1998; 141: 65-72
        • Banerjee C.
        • McCabe L.R.
        • Choi J.Y.
        • Hiebert S.W.
        • Stein J.L.
        • Stein G.S.
        • Lian J.B.
        Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex.
        J. Cell. Biochem. 1997; 66: 1-8
        • Ducy P.
        • Zhang R.
        • Geoffroy V.
        • Ridall A.L.
        • Karsenty G.
        Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation.
        Cell. 1997; 89: 747-754
        • Paredes R.
        • Arriagada G.
        • Cruzat F.
        • Villagra A.
        • Olate J.
        • Zaidi K.
        • van Wijnen A.
        • Lian J.B.
        • Stein G.S.
        • Stein J.L.
        • Montecino M.
        Bone-specific transcription factor Runx2 interacts with the 1alpha,25-dihydroxyvitamin D3 receptor to up-regulate rat osteocalcin gene expression in osteoblastic cells.
        Mol. Cell. Biol. 2004; 24: 8847-8861
        • Ghosh A.K.
        • Varga J.
        The transcriptional coactivator and acetyltransferase p300 in fibroblast biology and fibrosis.
        J. Cell. Physiol. 2007; 213: 663-671
        • Yu J.
        • de Belle I.
        • Liang H.
        • Adamson E.D.
        Coactivating factors p300 and CBP are transcriptionally crossregulated by Egr1 in prostate cells, leading to divergent responses.
        Mol. Cell. 2004; 15: 83-94
        • Ghosh A.K.
        • Yuan W.
        • Mori Y.
        • Varga J.
        Smad-dependent stimulation of type I collagen gene expression in human skin fibroblasts by TGF-beta involves functional cooperation with p300/CBP transcriptional coactivators.
        Oncogene. 2000; 19: 3546-3555
        • Ghosh A.K.
        • Yuan W.
        • Mori Y.
        • Chen S.
        • Varga J.
        Antagonistic regulation of type I collagen gene expression by interferon-gamma and transforming growth factor-beta. Integration at the level of p300/CBP transcriptional coactivators.
        J. Biol. Chem. 2001; 276: 11041-11048
        • Ghosh A.K.
        • Bhattacharyya S.
        • Varga J.
        The tumor suppressor p53 abrogates Smad-dependent collagen gene induction in mesenchymal cells.
        J. Biol. Chem. 2004; 279: 47455-47463
        • Ghosh A.K.
        • Bhattacharyya S.
        • Wei J.
        • Kim S.
        • Barak Y.
        • Mori Y.
        • Varga J.
        Peroxisome proliferator-activated receptor-gamma abrogates Smad-dependent collagen stimulation by targeting the p300 transcriptional coactivator.
        FASEB J. 2009; 23: 2968-2977
        • Sierra J.
        • Villagra A.
        • Paredes R.
        • Cruzat F.
        • Gutierrez S.
        • Javed A.
        • Arriagada G.
        • Olate J.
        • Imschenetzky M.
        • Van Wijnen A.J.
        • Lian J.B.
        • Stein G.S.
        • Stein J.L.
        • Montecino M.
        Regulation of the bone-specific osteocalcin gene by p300 requires Runx2/Cbfa1 and the vitamin D3 receptor but not p300 intrinsic histone acetyltransferase activity.
        Mol. Cell. Biol. 2003; 23: 3339-3351
        • Liu D.X.
        • Qian D.
        • Wang B.
        • Yang J.M.
        • Lu Z.
        p300-dependent ATF5 acetylation is essential for Egr-1 gene activation and cell proliferation and survival.
        Mol. Cell. Biol. 2011; 31: 3906-3916
        • Legube G.
        • Trouche D.
        Regulating histone acetyltransferases and deacetylases.
        EMBO Rep. 2003; 4: 944-947
        • Sang N.
        • Stiehl D.P.
        • Bohensky J.
        • Leshchinsky I.
        • Srinivas V.
        • Caro J.
        MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300.
        J. Biol. Chem. 2003; 278: 14013-14019
        • Janknecht R.
        • Nordheim A.
        MAP kinase-dependent transcriptional coactivation by elk-1 and its cofactor CBP.
        Biochem. Biophys. Res. Commun. 1996; 228: 831-837
        • Huang W.C.
        • Chen C.C.
        Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity.
        Mol. Cell. Biol. 2005; 25: 6592-6602
        • Ait-Si-Ali S.
        • Ramirez S.
        • Barre F.X.
        • Dkhissi F.
        • Magnaghi-Jaulin L.
        • Girault J.A.
        • Robin P.
        • Knibiehler M.
        • Pritchard L.L.
        • Ducommun B.
        • Trouche D.
        • Harel-Bellan A.
        Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A.
        Nature. 1998; 396: 184-186
        • Yuan L.W.
        • Gambee J.E.
        Phosphorylation of p300 at serine 89 by protein kinase C.
        J. Biol. Chem. 2000; 275: 40946-40951
        • Yuan L.W.
        • Soh J.W.
        • Weinstein I.B.
        Inhibition of histone acetyltransferase function of p300 by PKCdelta.
        Biochim. Biophys. Acta. 2002; 1592: 205-211
        • Yang W.
        • Hong Y.H.
        • Shen X.Q.
        • Frankowski C.
        • Camp H.S.
        • Leff T.
        Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors.
        J. Biol. Chem. 2001; 276: 38341-38344
        • Lee C.W.
        • Lin C.C.
        • Lin W.N.
        • Liang K.C.
        • Luo S.F.
        • Wu C.B.
        • Wang S.W.
        • Yang C.M.
        TNF-alpha induces MMP-9 expression via activation of Src/EGFR, PDGFR/PI3K/Akt cascade and promotion of NF-kappaB/p300 binding in human tracheal smooth muscle cells.
        Am. J. Physiol. Lung Cell. Mol. Physiol. 2007; 292: L799-L812
        • Dermaku-Sopjani M.
        • Sopjani M.
        • Saxena A.
        • Shojaiefard M.
        • Bogatikov E.
        • Alesutan I.
        • Eichenmuller M.
        • Lang F.
        Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho.
        Cell. Physiol. Biochem. 2011; 28: 251-258
        • Hu M.C.
        • Shi M.
        • Zhang J.
        • Pastor J.
        • Nakatani T.
        • Lanske B.
        • Razzaque M.S.
        • Rosenblatt K.P.
        • Baum M.G.
        • Kuro-o M.
        • Moe O.W.
        Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule.
        FASEB J. 2010; 24: 3438-3450
        • Villa-Bellosta R.
        • Ravera S.
        • Sorribas V.
        • Stange G.
        • Levi M.
        • Murer H.
        • Biber J.
        • Forster I.C.
        The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi.
        Am. J. Physiol. Renal Physiol. 2009; 296: F691-F699
        • Moreno J.A.
        • Izquierdo M.C.
        • Sanchez-Nino M.D.
        • Suarez-Alvarez B.
        • Lopez-Larrea C.
        • Jakubowski A.
        • Blanco J.
        • Ramirez R.
        • Selgas R.
        • Ruiz-Ortega M.
        • Egido J.
        • Ortiz A.
        • Sanz A.B.
        The inflammatory cytokines TWEAK and TNFalpha reduce renal klotho expression through NFkappaB.
        J. Am. Soc. Nephrol. 2011; 22: 1315-1325
        • Chen J.
        • Lin Y.
        • Sun Z.
        Deficiency in the anti-aging gene Klotho promotes aortic valve fibrosis through AMPKalpha-mediated activation of RUNX2.
        Aging Cell. 2016; 15: 853-860
        • Cheek J.D.
        • Wirrig E.E.
        • Alfieri C.M.
        • James J.F.
        • Yutzey K.E.
        Differential activation of valvulogenic, chondrogenic, and osteogenic pathways in mouse models of myxomatous and calcific aortic valve disease.
        J. Mol. Cell. Cardiol. 2012; 52: 689-700
        • Villa-Bellosta R.
        • Sorribas V.
        Phosphonoformic acid prevents vascular smooth muscle cell calcification by inhibiting calcium-phosphate deposition.
        Arterioscler. Thromb. Vasc. Biol. 2009; 29: 761-766
        • Wirrig E.E.
        • Gomez M.V.
        • Hinton R.B.
        • Yutzey K.E.
        COX2 inhibition reduces aortic valve calcification in vivo.
        Arterioscler. Thromb. Vasc. Biol. 2015; 35: 938-947