Advertisement

Transcoronary gradients of HDL-associated MicroRNAs in unstable coronary artery disease

      Abstract

      Aims

      MicroRNAs (miRNAs) are transported on high-density lipoproteins (HDLs) and HDL-associated miRNAs are involved in intercellular communication. We explored HDL-associated miRNAs concentration gradients across the coronary circulation in stable and unstable coronary artery disease patients and whether changes in the transcoronary gradient were associated with changes in HDL composition and size.

      Methods

      Acute coronary syndrome (ACS, n = 17) patients, those with stable coronary artery disease (stable CAD, n = 19) and control subjects without CAD (n = 6) were studied. HDLs were isolated from plasma obtained from the coronary sinus (CS), aortic root (arterial blood) and right atrium (venous blood). HDL-associated miRNAs (miR-16, miR-20a, miR-92a, miR-126, miR-222 and miR-223) were quantified by TaqMan miRNA assays. HDL particle sizes were determined by non-denaturing polyacrylamide gradient gel electrophoresis. HDL composition was measured immunoturbidometrically or enzymatically.

      Results

      A concentration gradient across the coronary circulation was observed for all the HDL-associated miRNAs. In ACS patients, there was a significant inverse transcoronary gradient for HDL-associated miR-16, miR-92a and miR-223 (p < 0.05) compared to patients with stable CAD. Changes in HDL-miRNA transcoronary gradients were not associated with changes in HDL composition or size.

      Conclusion

      HDLs are depleted of miR-16, miR-92a and miR-223 during the transcoronary passage in patients with ACS compared to patients with stable CAD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • He L.
        • Hannon G.J.
        MicroRNAs: small RNAs with a big role in gene regulation.
        Nat. Rev. Genet. 2004; 5: 522-531
        • Vickers K.C.
        • Palmisano B.T.
        • Shoucri B.M.
        • Shamburek R.D.
        • Remaley A.T.
        MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins.
        Nat. Cell Biol. 2011; 13: 423-433
        • Boon R.A.
        • Vickers K.C.
        Intercellular transport of microRNAs.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 186-192
        • Tabet F.
        • Vickers K.C.
        • Cuesta Torres L.F.
        • Wiese C.B.
        • Shoucri B.M.
        • Lambert G.
        • et al.
        HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells.
        Nat. Commun. 2014; 5: 3292
        • Wang Y.S.
        • Zhou J.
        • Hong K.
        • Cheng X.S.
        • Li Y.G.
        MicroRNA-223 displays a protective role against cardiomyocyte hypertrophy by targeting cardiac troponin I-interacting kinase.
        Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology. 2015; 35: 1546-1556
        • Qin D.
        • Wang X.
        • Li Y.
        • Yang L.
        • Wang R.
        • Peng J.
        • et al.
        MicroRNA-223-5p and -3p cooperatively suppress necroptosis in ischemic/reperfused hearts.
        J. Biol. Chem. 2016; 291: 20247-20259
        • Thum T.
        • Catalucci D.
        • Bauersachs J.
        MicroRNAs: novel regulators in cardiac development and disease.
        Cardiovasc. Res. 2008; 79: 562-570
        • Adhikari N.
        • Guan W.
        • Capaldo B.
        • Mackey A.J.
        • Carlson M.
        • Ramakrishnan S.
        • et al.
        Identification of a new target of miR-16, vacuolar protein sorting 4a.
        PLoS One. 2014; 9e101509
        • Marques F.Z.
        • Vizi D.
        • Khammy O.
        • Mariani J.A.
        • Kaye D.M.
        The transcardiac gradient of cardio-microRNAs in the failing heart.
        Eur. J. Heart Fail. 2016; 18: 1000-1008
        • Xu F.
        • Ahmed A.S.
        • Kang X.
        • Hu G.
        • Liu F.
        • Zhang W.
        • et al.
        MicroRNA-15b/16 attenuates vascular neointima formation by promoting the contractile phenotype of vascular smooth muscle through targeting YAP.
        Arterioscler. Thromb. Vasc. Biol. 2015; 35: 2145-2152
        • Ai F.
        • Zhang Y.
        • Peng B.
        miR-20a regulates proliferation, differentiation and apoptosis in P19 cell model of cardiac differentiation by targeting smoothened.
        Biology open. 2016; 5: 1260-1265
        • Frank D.
        • Gantenberg J.
        • Boomgaarden I.
        • Kuhn C.
        • Will R.
        • Jarr K.U.
        • et al.
        MicroRNA-20a inhibits stress-induced cardiomyocyte apoptosis involving its novel target Egln3/PHD3.
        J. Mol. Cell. Cardiol. 2012; 52: 711-717
        • Pin A.L.
        • Houle F.
        • Guillonneau M.
        • Paquet E.R.
        • Simard M.J.
        • Huot J.
        miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF.
        Angiogenesis. 2012; 15: 593-608
        • Bonauer A.
        • Carmona G.
        • Iwasaki M.
        • Mione M.
        • Koyanagi M.
        • Fischer A.
        • et al.
        MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice.
        Science. 2009; 324: 1710-1713
        • Schober A.
        • Nazari-Jahantigh M.
        • Wei Y.
        • Bidzhekov K.
        • Gremse F.
        • Grommes J.
        • et al.
        MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1.
        Nat. Med. 2014; 20: 368-376
        • Li B.
        • Tao Y.
        • Huang Q.
        Effect and mechanism of miR-126 in myocardial ischemia reperfusion.
        Genetics and molecular research: GMR. 2015; 14: 18990-18998
        • De Rosa S.
        • Fichtlscherer S.
        • Lehmann R.
        • Assmus B.
        • Dimmeler S.
        • Zeiher A.M.
        Transcoronary concentration gradients of circulating microRNAs.
        Circulation. 2011; 124: 1936-1944
        • King 3rd, S.B.
        • Smith Jr., S.C.
        • Hirshfeld Jr., J.W.
        • Jacobs A.K.
        • Morrison D.A.
        • Williams D.O.
        • et al.
        2007 focused update of the ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice guidelines.
        J. Am. Coll. Cardiol. 2008; 51: 172-209
        • Martinez G.J.
        • Robertson S.
        • Barraclough J.
        • Xia Q.
        • Mallat Z.
        • Bursill C.
        • et al.
        Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome.
        J. Am. Heart Assoc. 2015; 4e002128
        • Tabet F.
        • Cuesta Torres L.F.
        • Ong K.L.
        • Shrestha S.
        • Choteau S.A.
        • Barter P.J.
        • et al.
        High-density lipoprotein-associated miR-223 is altered after diet-induced weight loss in overweight and obese males.
        PLoS One. 2016; 11e0151061
        • Izzo C.
        • Grillo F.
        • Murador E.
        Improved method for determination of high-density-lipoprotein cholesterol I. Isolation of high-density lipoproteins by use of polyethylene glycol 6000.
        Clin. Chem. 1981; 27: 371-374
        • Ren J.
        • Zhang J.
        • Xu N.
        • Han G.
        • Geng Q.
        • Song J.
        • et al.
        Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease.
        PLoS One. 2013; 8e80738
        • Gensini G.G.
        A more meaningful scoring system for determining the severity of coronary heart disease.
        Am. J. Cardiol. 1983; 51: 606
        • Boeckel J.N.
        • Reis S.M.
        • Leistner D.
        • Thome C.E.
        • Zeiher A.M.
        • Fichtlscherer S.
        • et al.
        From heart to toe: heart's contribution on peripheral microRNA levels.
        Int. J. Cardiol. 2014; 172: 616-617
        • Widmer R.J.
        • Chung W.Y.
        • Herrmann J.
        • Jordan K.L.
        • Lerman L.O.
        • Lerman A.
        The association between circulating microRNA levels and coronary endothelial function.
        PLoS One. 2014; 9e109650
        • Sato T.
        • Takebayashi S.
        • Kohchi K.
        Increased subendothelial infiltration of the coronary arteries with monocytes/macrophages in patients with unstable angina. Histological data on 14 autopsied patients.
        Atherosclerosis. 1987; 68: 191-197
        • Wallsh E.
        • Weinstein G.S.
        • Franzone A.
        • Clavel A.
        • Rossi P.A.
        • Kreps E.
        Inflammation of the coronary arteries in patients with unstable angina.
        Tex. Heart Inst. J. 1986; 13: 105-108
        • Kohchi K.
        • Takebayashi S.
        • Hiroki T.
        • Nobuyoshi M.
        Significance of adventitial inflammation of the coronary artery in patients with unstable angina: results at autopsy.
        Circulation. 1985; 71: 709-716
        • Wagner J.
        • Riwanto M.
        • Besler C.
        • Knau A.
        • Fichtlscherer S.
        • Roxe T.
        • et al.
        Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 1392-1400
        • Porrello E.R.
        • Johnson B.A.
        • Aurora A.B.
        • Simpson E.
        • Nam Y.J.
        • Matkovich S.J.
        • et al.
        MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes.
        Circ. Res. 2011; 109: 670-679
        • Porrello E.R.
        • Mahmoud A.I.
        • Simpson E.
        • Johnson B.A.
        • Grinsfelder D.
        • Canseco D.
        • et al.
        Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 187-192
        • Fang Y.
        • Davies P.F.
        Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium.
        Arterioscler. Thromb. Vasc. Biol. 2012; 32: 979-987
        • Iaconetti C.
        • Polimeni A.
        • Sorrentino S.
        • Sabatino J.
        • Pironti G.
        • Esposito G.
        • et al.
        Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury.
        Basic Res. Cardiol. 2012; 107: 296
        • Liu X.
        • Cheng Y.
        • Zhang S.
        • Lin Y.
        • Yang J.
        • Zhang C.
        A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia.
        Circ. Res. 2009; 104: 476-487
        • Bazan H.A.
        • Hatfield S.A.
        • O'Malley C.B.
        • Brooks A.J.
        • Lightell Jr., D.
        • Woods T.C.
        Acute loss of miR-221 and miR-222 in the atherosclerotic plaque shoulder accompanies plaque rupture.
        Stroke. 2015; 46: 3285-3287
        • Martinez G.J.
        • Barraclough J.Y.
        • Nakhla S.
        • Kienzle V.
        • Robertson S.
        • Mallat Z.
        • et al.
        Neutrophil-derived microparticles are released into the coronary circulation following percutaneous coronary intervention in acute coronary syndrome patients.
        Biosci. Rep. 2017; 37

      Linked Article

      • Catch miR if you can — Transcoronary gradients of HDL-bound microRNAs
        International Journal of CardiologyVol. 253
        • Preview
          MicroRNAs (miRNAs) are small non-coding RNAs that are not translated into a functional protein, but exert their function through post-transcriptional modification of coding RNAs [1]. MiRNAs are not only present as fine-tuners within the cells, but can also circulate in body fluids such as blood. Remarkably, circulating miRNAs are protected from degradation due to their association with proteins as well as to lipoproteins and vesicles [2]. As a result, circulating miRNAs have gained much attention in recent years as potential biomarkers.
        • Full-Text
        • PDF