Advertisement
Research Article| Volume 264, P124-129, August 01, 2018

Download started.

Ok

Large animal model of acute right ventricular failure with functional tricuspid regurgitation

  • Author Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Marcin Malinowski
    Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Affiliations
    Meijer Heart and Vascular Institute at Spectrum Health, 100 Michigan Ave NE, Grand Rapids, MI 49503, USA

    Department of Cardiac Surgery, Medical University of Silesia, School of Medicine in Katowice, Ziołowa 47, 40635 Katowice, Poland
    Search for articles by this author
  • Author Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Alistair G. Proudfoot
    Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Affiliations
    Meijer Heart and Vascular Institute at Spectrum Health, 100 Michigan Ave NE, Grand Rapids, MI 49503, USA
    Search for articles by this author
  • Author Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Lenora Eberhart
    Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Affiliations
    Meijer Heart and Vascular Institute at Spectrum Health, 100 Michigan Ave NE, Grand Rapids, MI 49503, USA
    Search for articles by this author
  • Author Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Hans Schubert
    Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Affiliations
    Meijer Heart and Vascular Institute at Spectrum Health, 100 Michigan Ave NE, Grand Rapids, MI 49503, USA
    Search for articles by this author
  • Author Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Jeremy Wodarek
    Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Affiliations
    Meijer Heart and Vascular Institute at Spectrum Health, 100 Michigan Ave NE, Grand Rapids, MI 49503, USA
    Search for articles by this author
  • Author Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    David Langholz
    Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Affiliations
    Meijer Heart and Vascular Institute at Spectrum Health, 100 Michigan Ave NE, Grand Rapids, MI 49503, USA
    Search for articles by this author
  • Author Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Manuel K. Rausch
    Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Affiliations
    Department of Aerospace Engineering & Engineering Mechanics, Department of Biomedical Engineering, Institute for Computational Engineering and Science, University of Texas at Austin, 210 E 24th Street, Austin, TX 78703, USA
    Search for articles by this author
  • Author Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Tomasz A. Timek
    Correspondence
    Corresponding author at: Meijer Heart and Vascular Institute at Spectrum Health, 100 Michigan Ave SE, Grand Rapids, MI 49503, USA.
    Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.
    Affiliations
    Meijer Heart and Vascular Institute at Spectrum Health, 100 Michigan Ave NE, Grand Rapids, MI 49503, USA
    Search for articles by this author
  • Author Footnotes
    1 These authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

      Highlights

      • Right heart failure model is created by volume, pulmonary hypertension and ischemia.
      • Acute ovine right heart failure is accompanied by functional tricuspid regurgitation.
      • Right ventricle is dilated and changes its equatorial strain pattern.
      • Changes in ventricular geometry result in tricuspid annular enlargement.
      • Acute right heart failure model created provides the novel research platform.

      Abstract

      Background

      Functional tricuspid regurgitation (FTR) commonly arises secondary to conditions affecting the left heart and is associated with right ventricular dysfunction and tricuspid annular dilatation. We set out to establish an animal model of acute RV failure (RVF) with FTR resembling the clinical features.

      Methods

      Ten adult sheep had pressure sensors placed in the LV, RV, and right atrium while sonomicrometry crystals were implanted around tricuspid annulus and on the RV. Animals were studied open-chest to assess for RV function and FTR after: (1) volume infusion, (2) pulmonary artery constriction, (3) 5 min posterior descending artery occlusion, and (4) combination of all interventions. Hemodynamic, echocardiographic, and sonomicrometry data were collected at baseline and after every intervention. RV dimensions, RV strain, and annular area, perimeter, and size were calculated from crystal coordinates. The model was validated in six additional sheep studied only before and after combined interventions.

      Results

      Neither volume infusion, pulmonary hypertension, nor ischemia were associated with RVF or clinically significant TR when applied separately but combined resulted in RVF and greater than moderate FTR. In the validation group, maximal RV volume increased (62 ± 14 vs 70 ± 16 ml, p = 0.006), contractility decreased (20 ± 6 vs 12 ± 2%, p = 0.02), and strain increased. FTR increased from 0.4 ± 0.5 to 2.5 ± 0.8 (p < 0.001) and annular area from 652 ± 87 mm2 to 739 ± 87 mm2 (p = 0.005).

      Conclusions

      The developed ovine model of acute RVF was associated with significant annular and RV enlargement and FTR. This novel and clinically pertinent research platform offers insight into the acute RVF pathophysiology and can be utilized to evaluate treatment interventions.

      Abbreviations:

      CPB (cardiopulmonary bypass), CVP (central venous pressure), EDP (end-diastolic pressure), FTR (functional tricuspid regurgitation), HR (heart rate), LV (left ventricle), PDA (posterior descending artery), PHT (pulmonary hypertension), RA (right atrium), RV (right ventricle), TR (tricuspid regurgitation)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Haddad F.
        • Doyle R.
        • Murphy D.J.
        • Hunt S.A.
        Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure.
        Circulation. 2008; 117: 1717-1731
        • Haddad F.
        • Denault A.Y.
        • Couture P.
        • Cartier R.
        • Pellerin M.
        • Levesque S.
        • Lambert J.
        • Tardif J.C.
        Right ventricular myocardial performance index predicts perioperative mortality or circulatory failure in high-risk valvular surgery.
        J. Am. Soc. Echocardiogr. 2007; 20: 1065-1072
        • Di Mauro M.
        • Foschi M.
        • Tancredi F.
        • Guarracini S.
        • Di Marco M.
        • Habib A.M.
        • Kheirallah H.
        • Alsaied M.
        • Alfonso J.J.
        • Gallina S.
        • Calafiore A.M.
        Additive and independent prognostic role of abnormal right ventricle and pulmonary hypertension in mitral-tricuspid surgery.
        Int. J. Cardiol. 2017; 252: 39-43
        • Spinner E.M.
        • Shannon P.
        • Buice D.
        • Jimenez J.H.
        • Veledar E.
        • Del Nido P.J.
        • Adams D.H.
        • Yoganathan A.P.
        In vitro characterization of the mechanisms responsible for functional tricuspid regurgitation.
        Circulation. 2011; 124: 920-929
        • Mahesh B.
        • Wells F.
        • Nashef S.
        • Nair S.
        Role of concomitant tricuspid surgery in moderate functional tricuspid regurgitation in patients undergoing left heart valve surgery.
        Eur. J. Cardiothorac. Surg. 2013; 43: 2-8
        • Mutlak D.
        • Aronson D.
        • Lessick J.
        • Reisner S.A.
        • Dabbah S.
        • Agmon Y.
        Functional tricuspid regurgitation in patients with pulmonary hypertension: is pulmonary artery pressure the only determinant of regurgitation severity?.
        Chest. 2009; 135: 115-121
        • Topilsky Y.
        • Tribouilloy C.
        • Michelena H.I.
        • Pislaru S.
        • Mahoney D.W.
        • Enriquez-Sarano M.
        Pathophysiology of tricuspid regurgitation: quantitative doppler echocardiographic assessment of respiratory dependence.
        Circulation. 2010; 122: 1505-1513
        • Fukuda S.
        • Gillinov A.M.
        • Song J.M.
        • Daimon M.
        • Kongsaerepong V.
        • Thomas J.D.
        • Shiota T.
        Echocardiographic insights into atrial and ventricular mechanisms of functional tricuspid regurgitation.
        Am. Heart J. 2006; 152: 1208-1214
        • Barlow J.B.
        Aspects of tricuspid valve disease, heart failure and the “restriction-dilatation syndrome”.
        Rev. Port. Cardiol. Orgao Of. Da Soc. Port. Cardiol. Port. J. Cardiol. an Off. J. Port. Soc. Cardiol. 1995; 14: 991-1004
        • Hornick P.
        • Harris P.A.
        • Taylor K.M.
        Tricuspid valve replacement subsequent to previous open heart surgery.
        J. Heart Valve Dis. 1996; 5: 20-25
        • Borgdorff M.A.J.
        • Dickinson M.G.
        • Berger R.M.F.
        • Bartelds B.
        Right ventricular failure due to chronic pressure load: what have we learned in animal models since the NIH working group statement?.
        Heart Fail. Rev. 2015; 20: 475-491
        • Heerdt P.M.
        • Blessios G.A.
        • Beach M.L.
        • Hogue C.W.
        Flow dependency of error in thermodilution measurement of cardiac output during acute tricuspid regurgitation.
        J. Cardiothorac. Vasc. Anesth. 2001; 15: 183-187
        • Xie X.J.
        • Liao S.J.
        • Wu Y.H.
        • Lu C.
        • Zhu P.
        • Fei H.W.
        • Xiao X.J.
        • Huang H.L.
        Tricuspid leaflet resection in an open beating heart for the creation of a canine tricuspid regurgitation model.
        Interact. Cardiovasc. Thorac. Surg. 2016; 22: 149-154
        • Hoppe H.
        • Pavcnik D.
        • Chuter T.A.
        • Tseng E.
        • Kim M.D.
        • Bernat I.
        • Uchida B.
        • Keller F.S.
        • Rösch J.
        Percutaneous technique for creation of tricuspid regurgitation in an ovine model.
        J. Vasc. Interv. Radiol. 2007; 18: 133-136
        • Miller M.J.
        • McKay R.G.
        • Ferguson J.J.
        • Sahagian P.
        • Nakao S.
        • Come P.C.
        • Grossman W.
        Right atrial pressure-volume relationships in tricuspid regurgitation.
        Circulation. 1986; 73: 799-808
        • Otaki M.
        • Lust R.M.
        Modification of De Vega’s tricuspid annuloplasty for experimental tricuspid regurgitation.
        J. Card. Surg. 1994; 9: 399-404
        • Walter E.M.D.
        • Delmo Walter E.M.
        • Vasilyev N.V.
        • Sill B.
        • Padala M.
        • Jimenez J.
        • Yoganathan A.P.
        • Hetzer R.
        • del Nido P.J.
        Creation of a tricuspid valve regurgitation model from tricuspid annular dilatation using the cardioport video-assisted imaging system.
        J. Heart Valve Dis. 2011; 20: 184-188
        • Kinney T.
        • Olinger G.
        Acute, reversible tricuspid insufficiency: creation in canine model.
        Am. J. Dent. 1991; 260: H638-41
        • Maisano F.
        • Taramasso M.
        • Guidotti A.
        • Redaelli A.
        • Fiore G.B.
        • Baroni G.
        • Patete P.
        • Alfieri O.
        Simulation of functional tricuspid regurgitation using an isolated porcine heart model.
        J. Heart Valve Dis. 2011; 20: 657-663
        • Malinowski M.
        • Wilton P.
        • Khaghani A.
        • Langholz D.
        • Hooker V.
        • Eberhart L.
        • Hooker R.L.
        • Timek T.A.
        The effect of pulmonary hypertension on ovine tricuspid annular dynamics.
        Eur. J. Cardio-Thoracic Surg. 2016; 49: 40-45
        • Pratt V.
        Direct least-squares fitting of algebraic surfaces.
        SIGGRAPH Comput. Graph. 1987; 21: 145-152
        • Rausch M.K.
        • Bothe W.
        • Kvitting J.P.E.
        • Swanson J.C.
        • Ingels N.B.
        • Miller D.C.
        • Kuhl E.
        Characterization of mitral valve annular dynamics in the beating heart.
        Ann. Biomed. Eng. 2011; 39: 1690-1702
        • Rausch M.K.
        • Malinowski M.
        • Wilton P.
        • Khaghani A.
        • Timek T.A.
        Engineering analysis of tricuspid annular dynamics in the beating ovine heart.
        Ann. Biomed. Eng. 2018; 46: 443-451
        • Braunwald N.S.
        • Ross J.
        • Morrow A.G.
        Conservative management of tricuspid regurgitation in patients undergoing mitral valve replacement.
        Circulation. 1967; 35: I63-I69
        • Nishimura R.A.
        • Otto C.M.
        • Bonow R.O.
        • Carabello B.A.
        • Erwin J.P.
        • Guyton R.A.
        • O'Gara P.T.
        • Ruiz C.E.
        • Skubas N.J.
        • Sorajja P.
        • Sundt T.M.
        • Thomas J.D.
        AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American college of cardiology/American heart association task force on practice guidelines.
        J. Am. Coll. Cardiol. 2014; 63: e57-e185
        • Pfannmüller B.
        • Doenst T.
        • Eberhardt K.
        • Seeburger J.
        • Borger M.A.
        • Mohr F.W.
        Increased risk of dehiscence after tricuspid valve repair with rigid annuloplasty rings.
        J. Thorac. Cardiovasc. Surg. 2012; 143: 1050-1055
        • McCarthy P.M.
        • Bhudia S.K.
        • Rajeswaran J.
        • Hoercher K.J.
        • Lytle B.W.
        • Cosgrove D.M.
        • Blackstone E.H.
        • Bolling S.F.
        • Carpentier A.F.
        • De Vega N.G.
        • Accola K.D.
        • Seitelberger R.
        • Dreyfus G.D.
        Tricuspid valve repair: durability and risk factors for failure.
        J. Thorac. Cardiovasc. Surg. 2004; 127: 674-685
        • Fukuda S.
        • Song J.M.
        • Gillinov A.M.
        • McCarthy P.M.
        • Daimon M.
        • Kongsaerepong V.
        • Thomas J.D.
        • Shiota T.
        Tricuspid valve tethering predicts residual tricuspid regurgitation after tricuspid annuloplasty.
        Circulation. 2005; 111: 975-979
        • Ton-Nu T.T.
        • Levine R.A.
        • Handschumacher M.D.
        • Dorer D.J.
        • Yosefy C.
        • Fan D.
        • Hua L.
        • Jiang L.
        • Hung J.
        Geometric determinants of functional tricuspid regurgitation: insights from 3-dimensional echocardiography.
        Circulation. 2006; 114: 143-149
        • Onoda K.
        • Yasuda F.
        • Takao M.
        • Shimono T.
        • Tanaka K.
        • Shimpo H.
        • Yada I.
        Long-term follow-up after Carpentier-Edwards ring annuloplasty for tricuspid regurgitation.
        Ann. Thorac. Surg. 2000; 70: 796-799
        • Tibayan F.A.
        Geometric distortions of the mitral valvular-ventricular complex in chronic ischemic mitral regurgitation.
        Circulation. 2003; 108: 116II-121
        • Timek T.A.
        • Dagum P.
        • Lai D.T.
        • Liang D.
        • Daughters G.T.
        • Ingels N.B.
        • Miller D.C.
        Pathogenesis of mitral regurgitation in tachycardia-induced cardiomyopathy.
        Circulation. 2001; 104 (12 Suppl 1): I47-I153
        • Langer F.
        • Kunihara T.
        • Hell K.
        • Schramm R.
        • Schmidt K.I.
        • Aicher D.
        • Kindermann M.
        • Schäfers H.J.
        RING+STRING successful repair technique for ischemic mitral regurgitation with severe leaflet tethering.
        Circulation. 2009; 120: S85-S91
        • Minato N.
        • Itoh T.
        Direct imaging of the tricuspid valve annular motions by fiberoptic cardioscopy in dogs with tricuspid regurgitation. II. Does flexible ring annuloplasty preserve the annular motions?.
        J. Thorac. Cardiovasc. Surg. 1992; 104: 1554-1560
        • Dreyfus G.D.
        • Chan K.M.J.
        Functional tricuspid regurgitation: a more complex entity than it appears.
        Heart. 2009; 95: 868-869
        • Yamauchi H.
        • Vasilyev N.V.
        • Marx G.R.
        • Loyola H.
        • Padala M.
        • Yoganathan A.P.
        • Del Nido P.J.
        Right ventricular papillary muscle approximation as a novel technique of valve repair for functional tricuspid regurgitation in an ex vivo porcine model.
        J. Thorac. Cardiovasc. Surg. 2012; 144: 235-242
        • Voelkel N.F.
        • Quaife R.A.
        • Leinwand L.A.
        • Barst R.J.
        • McGoon M.D.
        • Meldrum D.R.
        • Dupuis J.
        • Long C.S.
        • Rubin L.J.
        • Smart F.W.
        • Suzuki Y.J.
        • Gladwin M.
        • Denholm E.M.
        • Gail D.B.
        Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure.
        Circulation. 2006; 114: 1883-1891
        • Vargas Abello L.M.
        • Klein A.L.
        • Marwick T.H.
        • Nowicki E.R.
        • Rajeswaran J.
        • Puwanant S.
        • Blackstone E.H.
        • Pettersson G.B.
        Understanding right ventricular dysfunction and functional tricuspid regurgitation accompanying mitral valve disease.
        J. Thorac. Cardiovasc. Surg. 2013; 145: 1234-1241
        • Dreyfus G.D.
        • Corbi P.J.
        • Chan K.M.J.
        • Bahrami T.
        Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair?.
        Ann. Thorac. Surg. 2005; 79: 127-132
        • Fawzy H.
        • Fukamachi K.
        • Mazer C.D.
        • Harrington A.
        • Latter D.
        • Bonneau D.
        • Errett L.
        Complete mapping of the tricuspid valve apparatus using three-dimensional sonomicrometry.
        J. Thorac. Cardiovasc. Surg. 2011; 141: 1037-1043