Advertisement
Research Article| Volume 264, P137-144, August 01, 2018

Download started.

Ok

Critical role of the chymase/angiotensin-(1–12) axis in modulating cardiomyocyte contractility

  • Tiankai Li
    Affiliations
    Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China

    Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
    Search for articles by this author
  • Xiaowei Zhang
    Affiliations
    Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States

    Department of Cardiology, the Second Affiliated Hospital of Nantong University, Nantong, China
    Search for articles by this author
  • Heng-Jie Cheng
    Affiliations
    Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China

    Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
    Search for articles by this author
  • Zhi Zhang
    Affiliations
    Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States

    Cardiovascular Department, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
    Search for articles by this author
  • Sarfaraz Ahmad
    Affiliations
    Departments of Surgery, Internal Medicine-Nephrology, and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
    Search for articles by this author
  • Jasmina Varagic
    Affiliations
    Departments of Surgery, Internal Medicine-Nephrology, and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
    Search for articles by this author
  • Weimin Li
    Affiliations
    Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
    Search for articles by this author
  • Che Ping Cheng
    Correspondence
    Corresponding author at: Section on Cardiovascular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1045, United States.
    Affiliations
    Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China

    Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
    Search for articles by this author
  • Carlos M. Ferrario
    Affiliations
    Departments of Surgery, Internal Medicine-Nephrology, and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
    Search for articles by this author

      Highlights

      • Ang-(1–12) as a chymase-dependent substrate for generating Ang II inotropic activity
      • Ang-(1–12) stimulates myocyte contractile function and [Ca2+]iT in both normal and HF.
      • HF reduces Ang-(1–12) actions on myocyte contractility and [Ca2+]i regulation.
      • Altered Ang-(1–12) response in HF is mediated through a cAMP-dependent mechanism.
      • Attenuated cardiac effect of Ang-(1–12) in HF is coupled to both Gs and Gi proteins.

      Abstract

      Background

      Angiotensin-(1–12) [Ang-(1–12)] is a chymase-dependent source for angiotensin II (Ang II) cardiac activity. The direct contractile effects of Ang-(1–12) in normal and heart failure (HF) remain to be demonstrated. We assessed the hypothesis that Ang-(1–12) may modulate [Ca2+]i regulation and alter cardiomyocyte contractility in normal and HF rats.

      Methods and results

      We compared left ventricle (LV) myocyte contractile and calcium transient ([Ca2+]iT) responses to angiotensin peptides in 16 SD rats with isoproterenol-induced HF and 16 age-matched controls. In normal myocytes, versus baseline, Ang II (10−6 M) superfusion significantly increased myocyte contractility (dL/dtmax: 40%) and [Ca2+]iT (29%). Ang-(1–12) (4 × 10−6 M) caused similar increases in dL/dtmax (34%) and [Ca2+]iT (25%). Compared with normal myocytes, superfusion of Ang II and Ang-(1–12) in myocytes obtained from rats with isoproterenol-induced HF caused similar but significantly attenuated positive inotropic actions with about 42% to 50% less increases in dL/dtmax and [Ca2+]iT. Chymostatin abolished Ang-(1–12)-mediated effects in normal and HF myocytes. The presence of an inhibitory cAMP analog, Rp-cAMPS prevented Ang-(1–12)-induced inotropic effects in both normal and HF myocytes. Incubation of HF myocytes with pertussis toxin (PTX) further augmented Ang II-mediated contractility.

      Conclusions

      Ang-(1–12) stimulates cardiomyocyte contractile function and [Ca2+]iT in both normal and HF rats through a chymase mediated action. Altered inotropic responses to Ang-(1–12) and Ang II in HF myocytes are mediated through a cAMP-dependent mechanism that is coupled to both stimulatory G and inhibitory PTX-sensitive G proteins.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nagata S.
        • Kato J.
        • Sasaki K.
        • Minamino N.
        • Eto T.
        • Kitamura K.
        Isolation and identification of proangiotensin-12, a possible component of the renin–angiotensin system.
        Biochem. Biophys. Res. Commun. 2006; 350: 1026-1031
        • Ferrario C.M.
        • Ahmad S.
        • Nagata S.
        • Simington S.W.
        • Varagic J.
        • Kon N.
        • et al.
        An evolving story of angiotensin-II-forming pathways in rodents and humans.
        Clin. Sci. (Lond.). 2014; 126: 461-469
        • Ferrario C.M.
        • Ahmad S.
        • Varagic J.
        • Cheng C.P.
        • Groban L.
        • Wang H.
        • et al.
        Intracrine angiotensin II functions originate from noncanonical pathways in the human heart.
        Am. J. Physiol. Heart Circ. Physiol. 2016; 311: H404-14
        • Reyes S.
        • Varagic J.
        • Ahmad S.
        • VonCannon J.
        • Kon N.D.
        • Wang H.
        • et al.
        Novel cardiac intracrine mechanisms based on Ang-(1–12)/chymase axis require a revision of therapeutic approaches in human heart disease.
        Curr. Hypertens. Rep. 2017; 19: 16
        • Nagata S.
        • Varagic J.
        • Kon N.D.
        • Wang H.
        • Groban L.
        • Simington S.W.
        • et al.
        Differential expression of the angiotensin-(1-12)/chymase axis in human atrial tissue.
        Ther. Adv. Cardiovasc. Dis. 2015; 9: 168-180
        • Ahmad S.
        • Simmons T.
        • Varagic J.
        • Moniwa N.
        • Chappell M.C.
        • Ferrario C.M.
        Chymase-dependent generation of angiotensin II from angiotensin-(1–12) in human atrial tissue.
        PLoS One. 2011; 6e28501
        • Ferrario C.M.
        • Mullick A.E.
        Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease.
        Pharmacol. Res. 2017; 125: 57-71
        • De Mello W.C.
        Local renin angiotensin aldosterone systems and cardiovascular diseases.
        Med. Clin. North Am. 2017; 101: 117-127
        • Dell'Italia L.J.
        • Meng Q.C.
        • Balcells E.
        • Straeter-Knowlen I.M.
        • Hankes G.H.
        • Dillon R.
        • et al.
        Increased ACE and chymase-like activity in cardiac tissue of dogs with chronic mitral regurgitation.
        Am. J. Phys. 1995; 269: H2065-73
        • Froogh G.
        • Pinto J.T.
        • Le Y.
        • Kandhi S.
        • Aleligne Y.
        • Huang A.
        • et al.
        Chymase-dependent production of angiotensin II: an old enzyme in old hearts.
        Am. J. Physiol. Heart Circ. Physiol. 2017; 312: H223-H231
        • Kumar R.
        • Thomas C.M.
        • Yong Q.C.
        • Chen W.
        • Baker K.M.
        The intracrine renin-angiotensin system.
        Clin. Sci. (Lond.). 2012; 123: 273-284
        • Teerlink J.R.
        • Pfeffer J.M.
        • Pfeffer M.A.
        Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats.
        Circ. Res. 1994; 75: 105-113
        • Zhang Z.S.
        • Cheng H.J.
        • Onishi K.
        • Ohte N.
        • Wannenburg T.
        • Cheng C.P.
        Enhanced inhibition of L-type Ca2+ current by beta3-adrenergic stimulation in failing rat heart.
        J. Pharmacol. Exp. Ther. 2005; 315: 1203-1211
        • Morimoto A.
        • Hasegawa H.
        • Cheng H.J.
        • Little W.C.
        • Cheng C.P.
        Endogenous beta3-adrenoreceptor activation contributes to left ventricular and cardiomyocyte dysfunction in heart failure.
        Am. J. Physiol. Heart Circ. Physiol. 2004; 286: H2425-33
        • Shao Q.
        • Cheng H.J.
        • Callahan M.F.
        • Kitzman D.W.
        • Li W.M.
        • Cheng C.P.
        Overexpression myocardial inducible nitric oxide synthase exacerbates cardiac dysfunction and beta-adrenergic desensitization in experimental hypothyroidism.
        Int. J. Cardiol. 2016; 204: 229-241
        • Suzuki M.
        • Ohte N.
        • Wang Z.M.
        • Williams Jr., D.L.
        • Little W.C.
        • Cheng C.P.
        Altered inotropic response of endothelin-1 in cardiomyocytes from rats with isoproterenol-induced cardiomyopathy.
        Cardiovasc. Res. 1998; 39: 589-599
        • Ahmad S.
        • Varagic J.
        • VonCannon J.L.
        • Groban L.
        • Collawn J.F.
        • Dell'Italia L.J.
        • et al.
        Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1–12) metabolizing enzyme.
        Biochem. Biophys. Res. Commun. 2016; 478: 559-564
        • Zhou P.
        • Cheng C.P.
        • Li T.
        • Ferrario C.M.
        • Cheng H.J.
        Modulation of cardiac L-type Ca2+ current by angiotensin-(1–7): normal versus heart failure.
        Ther. Adv. Cardiovasc. Dis. 2015; 9: 342-353
        • De Mello W.C.
        • Dell'Itallia L.J.
        • Varagic J.
        • Ferrario C.M.
        Intracellular angiotensin-(1–12) changes the electrical properties of intact cardiac muscle.
        Mol. Cell. Biochem. 2016; 422: 31-40
        • Ahmad S.
        • Varagic J.
        • Westwood B.M.
        • Chappell M.C.
        • Ferrario C.M.
        Uptake and metabolism of the novel peptide angiotensin-(1–12) by neonatal cardiac myocytes.
        PLoS One. 2011; 6e15759
        • Ahmad S.
        • Wei C.C.
        • Tallaj J.
        • Dell'Italia L.J.
        • Moniwa N.
        • Varagic J.
        • et al.
        Chymase mediates angiotensin-(1–12) metabolism in normal human hearts.
        J. Am. Soc. Hypertens. 2013; 7: 128-136
        • Prosser H.C.
        • Forster M.E.
        • Richards A.M.
        • Pemberton C.J.
        Cardiac chymase converts rat proAngiotensin-12 (PA12) to angiotensin II: effects of PA12 upon cardiac haemodynamics.
        Cardiovasc. Res. 2009; 82: 40-50
        • Nagata S.
        • Kato J.
        • Kuwasako K.
        • Kitamura K.
        Plasma and tissue levels of proangiotensin-12 and components of the renin-angiotensin system (RAS) following low- or high-salt feeding in rats.
        Peptides. 2010; 31: 889-892
        • Chan K.H.
        • Chen Y.H.
        • Zhang Y.
        • Wong Y.H.
        • Dun N.J.
        Angiotensin-[1–12] interacts with angiotensin type I receptors.
        Neuropharmacology. 2014; 81: 267-273
        • Ahmad S.
        • Varagic J.
        • Groban L.
        • Dell'Italia L.J.
        • Nagata S.
        • Kon N.D.
        • et al.
        Angiotensin-(1–12): a chymase-mediated cellular angiotensin II substrate.
        Curr. Hypertens. Rep. 2014; 16: 429
        • Fu L.
        • Wei C.C.
        • Powell P.C.
        • Bradley W.E.
        • Ahmad S.
        • Ferrario C.M.
        • et al.
        Increased fibroblast chymase production mediates procollagen autophagic digestion in volume overload.
        J. Mol. Cell. Cardiol. 2016; 92: 1-9
        • Wei C.C.
        • Hase N.
        • Inoue Y.
        • Bradley E.W.
        • Yahiro E.
        • Li M.
        • et al.
        Mast cell chymase limits the cardiac efficacy of Ang I-converting enzyme inhibitor therapy in rodents.
        J. Clin. Invest. 2010; 120: 1229-1239
        • Dell'Italia L.J.
        • Meng Q.C.
        • Balcells E.
        • Wei C.C.
        • Palmer R.
        • Hageman G.R.
        • et al.
        Compartmentalization of angiotensin II generation in the dog heart. Evidence for independent mechanisms in intravascular and interstitial spaces.
        J. Clin. Invest. 1997; 100: 253-258
        • Ahmad S.
        • Sun X.
        • Lin M.
        • Varagic J.
        • Zapata-Sudo G.
        • Ferrario C.M.
        • et al.
        Blunting of estrogen modulation of cardiac cellular chymase/RAS activity and function in SHR.
        J. Cell. Physiol. 2018; 233: 3330-3342
        • Husain A.
        The chymase–angiotensin system in humans.
        J. Hypertens. 1993; 11: 1155-1159
        • Jessup J.A.
        • Trask A.J.
        • Chappell M.C.
        • Nagata S.
        • Kato J.
        • Kitamura K.
        • et al.
        Localization of the novel angiotensin peptide, angiotensin-(1–12), in heart and kidney of hypertensive and normotensive rats.
        Am. J. Physiol. Heart Circ. Physiol. 2008; 294: H2614-8
        • Abadir P.M.
        • Walston J.D.
        • Carey R.M.
        Subcellular characteristics of functional intracellular renin-angiotensin systems.
        Peptides. 2012; 38: 437-445
        • Kumar R.
        • Singh V.P.
        • Baker K.M.
        The intracellular renin–angiotensin system in the heart.
        Curr. Hypertens. Rep. 2009; 11: 104-110
        • Kurabayashi M.
        • Yazaki Y.
        Downregulation of angiotensin II receptor type 1 in heart failure. A process of adaptation or deterioration?.
        Circulation. 1997; 95: 1104-1107
        • Liao Y.
        • Husain A.
        The chymase–angiotensin system in humans: biochemistry, molecular biology and potential role in cardiovascular diseases.
        Can. J. Cardiol. 1995; : 13F-19F
        • Lindpaintner K.
        • Ganten D.
        The cardiac renin–angiotensin system. An appraisal of present experimental and clinical evidence.
        Circ. Res. 1991; 68: 905-921
        • Lindpaintner K.
        • Ganten D.
        Tissue renin–angiotensin systems and their modulation: the heart as a paradigm for new aspects of converting enzyme inhibition.
        Cardiology. 1991; 79: 32-44
        • Ikenouchi H.
        • Barry W.H.
        • Bridge J.H.
        • Weinberg E.O.
        • Apstein C.S.
        • Lorell B.H.
        Effects of angiotensin II on intracellular Ca2+ and pH in isolated beating rabbit hearts and myocytes loaded with the indicator indo-1.
        J. Physiol. 1994; 480: 203-215
        • De Mello W.C.
        Intracellular angiotensin II disrupts chemical communication and impairs metabolic cooperation between cardiac myocytes.
        Peptides. 2015; 72: 57-60
        • De Mello W.C.
        • Ferrario C.M.
        • Jessup J.A.
        Beneficial versus harmful effects of Angiotensin (1–7) on impulse propagation and cardiac arrhythmias in the failing heart.
        J. Renin-Angiotensin-Aldosterone Syst. 2007; 8: 74-80
        • Ang R.
        • Opel A.
        • Tinker A.
        The role of inhibitory G proteins and regulators of G protein signaling in the in vivo control of heart rate and predisposition to cardiac arrhythmias.
        Front. Physiol. 2012; 3: 96
        • Eschenhagen T.
        • Mende U.
        • Diederich M.
        • Nose M.
        • Schmitz W.
        • Scholz H.
        • et al.
        Long term beta-adrenoceptor-mediated up-regulation of Gi alpha and G(o) alpha mRNA levels and pertussis toxin-sensitive guanine nucleotide-binding proteins in rat heart.
        Mol. Pharmacol. 1992; 42: 773-783
        • Grimm D.
        • Elsner D.
        • Schunkert H.
        • Pfeifer M.
        • Griese D.
        • Bruckschlegel G.
        • et al.
        Development of heart failure following isoproterenol administration in the rat: role of the renin–angiotensin system.
        Cardiovasc. Res. 1998; 37: 91-100
        • Yeager J.C.
        • Iams S.G.
        The hemodynamics of isoproterenol-induced cardiac failure in the rat.
        Circ. Shock. 1981; 8: 151-163
        • De Mello W.C.
        • Danser A.H.
        Angiotensin II and the heart: on the intracrine renin–angiotensin system.
        Hypertension. 2000; 35: 1183-1188
        • Lefroy D.C.
        • Crake T.
        • Del Monte F.
        • Vescovo G.
        • Dalla Libera L.
        • Harding S.
        • et al.
        Angiotensin II and contraction of isolated myocytes from human, guinea pig, and infarcted rat hearts.
        Am. J. Phys. 1996; 270: H2060-9
        • Wang H.
        • Jessup J.A.
        • Zhao Z.
        • Da Silva J.
        • Lin M.
        • MacNamara L.M.
        • et al.
        Characterization of the cardiac renin angiotensin system in oophorectomized and estrogen-replete mRen2.Lewis rats.
        PLoS One. 2013; 8e76992