Advertisement

Deep learning to detect significant coronary artery disease from plain chest radiographs AI4CAD

Published:November 04, 2022DOI:https://doi.org/10.1016/j.ijcard.2022.10.154

      Highlights

      • Chest radiograph is one of the first imaging investigations performed in patients referred for chest pain.
      • It is not believed to provide specific information for diagnosis or event risk stratification of CAD.
      • A plain chest radiograph carries enough signs of severe CAD presence.
      • DCNN interpretation of chest radiographs can be integrated into existing risk stratification methods and investigations.
      • AI-read chest radiograms could provide a supportive tool to estimate the PTP of severe CAD in patients referred for angina.

      Abstract

      Background

      The predictive role of chest radiographs in patients with suspected coronary artery disease (CAD) is underestimated and may benefit from artificial intelligence (AI) applications.

      Objectives

      To train, test, and validate a deep learning (DL) solution for detecting significant CAD based on chest radiographs.

      Methods

      Data of patients referred for angina and undergoing chest radiography and coronary angiography were analysed retrospectively. A deep convolutional neural network (DCNN) was designed to detect significant CAD from posteroanterior/anteroposterior chest radiographs. The DCNN was trained for severe CAD binary classification (absence/presence). Coronary angiography reports were the ground truth. Stenosis severity of ≥70% for non–left main vessels and ≥ 50% for left main defined severe CAD.

      Results

      Information of 7728 patients was reviewed. Severe CAD was present in 4091 (53%). Patients were randomly divided for algorithm training (70%; n = 5454) and fine-tuning/model validation (10%; n = 773). Internal clinical validation (model testing) was performed with the remaining patients (20%; n = 1501). At binary logistic regression, DCNN prediction was the strongest severe CAD predictor (p < 0.0001; OR: 1.040; CI: 1.032–1.048). Using a high sensitivity operating cut-point, the DCNN had a sensitivity of 0.90 to detect significant CAD (specificity 0.31; AUC 0.73; 95% CI DeLong, 0.69–0.76). Adding to the AI chest radiograph interpretation angina status improved the prediction (AUC 0.77; 95% CI DeLong, 0.74–0.80).

      Conclusion

      AI-read chest radiographs could be used to pre-test significant CAD probability in patients referred for suspected angina. Further studies are required to externally validate our algorithm, develop a clinically applicable tool, and support CAD screening in broader settings.

      Graphical abstract

      Unlabelled Image
      Graphical AbstractAI4CAD: Deep learning to detect severe CAD from chest x-rays.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Li Z.
        • Lin L.
        • Wu H.
        • Yan L.
        • Wang H.
        • Yang H.
        • Li H.
        Global, regional, and National Death, and disability-adjusted life-years (DALYs) for cardiovascular disease in 2017 and trends and risk analysis from 1990 to 2017 using the global burden of disease study and implications for prevention.
        Front. Public Health. 2021; 9559751
        • Timmis A.
        • Vardas P.
        • Townsend N.
        • Torbica A.
        • Katus H.
        • De Smedt D.
        • Gale C.P.
        • Maggioni A.P.
        • Petersen S.E.
        • Huculeci R.
        • Kazakiewicz D.
        • Benito Rubio V.
        • Ignatiuk B.
        • Raisi-Estabragh Z.
        • Pawlak A.
        • Karagiannidis E.
        • Treskes R.
        • Gaita D.
        • Beltrame J.F.
        • McConnachie A.
        • Bardinet I.
        • Graham I.
        • Flather M.
        • Elliott P.
        • Mossialos E.A.
        • Weidinger F.
        • Achenbach S.
        European Society of Cardiology: cardiovascular disease statistics 2021.
        Eur. Heart J. Engl. 2022; 43: 716-799
        • Baskaran L.
        • Danad I.
        • Gransar H.
        • Hartaigh B.
        • Schulman-Marcus J.
        • Lin F.Y.
        • Peña J.M.
        • Hunter A.
        • Newby D.E.
        • Adamson P.D.
        • Min J.K.
        A comparison of the updated diamond-Forrester, CAD consortium, and CONFIRM history-based risk scores for predicting obstructive coronary artery disease in patients with stable chest pain: the SCOT-HEART coronary CTA cohort.
        JACC Cardiovasc. Imaging USA. 2019; 12: 1392-1400
        • Genders T.S.S.
        • Steyerberg E.W.
        • Alkadhi H.
        • Leschka S.
        • Desbiolles L.
        • Nieman K.
        • Galema T.W.
        • Meijboom W.B.
        • Mollet N.R.
        • Feyter P.J.
        • Cademartiri F.
        • Maffei E.
        • Dewey M.
        • Zimmermann E.
        • Laule M.
        • Pugliese F.
        • Barbagallo R.
        • Sinitsyn V.
        • Bogaert J.
        • Goetschalckx K.
        • Schoepf U.J.
        • Rowe G.W.
        • Schuijf J.D.
        • Bax J.J.
        • Graaf F.R.
        • Knuuti J.
        • Kajander S.
        • Mieghem C.A.G.
        • Meijs M.F.L.
        • Cramer M.J.
        • et al.
        A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension.
        Eur. Heart J. Engl. 2011; 32: 1316-1330
        • Almeida J.
        • Fonseca P.
        • Dias T.
        • Ladeiras-Lopes R.
        • Bettencourt N.
        • Ribeiro J.
        • Gama V.
        Comparison of coronary artery disease consortium 1 and 2 scores and Duke clinical score to predict obstructive coronary disease by invasive coronary angiography.
        Clin. Cardiol. 2016; 39: 223-228
        • Dey D.
        • Slomka P.J.
        • Leeson P.
        • Comaniciu D.
        • Shrestha S.
        • Sengupta P.P.
        • Marwick T.H.
        Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review.
        J. Am. Coll. Cardiol. 2019; 73: 1317-1335
        • Bader A.S.
        • Rubinowitz A.N.
        • Gange C.P.J.
        • Bader E.M.
        • Cortopassi I.O.
        Imaging in the evaluation of chest pain in the primary care setting, part 1: cardiovascular etiologies.
        Am. J. Med. USA. 2020; 133: 1033-1038
        • Lawton J.S.
        • Tamis-Holland J.E.
        • Bangalore S.
        • Bates E.R.
        • Beckie T.M.
        • Bischoff J.M.
        • Bittl J.A.
        • Cohen M.G.
        • DiMaio J.M.
        • Don C.W.
        • Fremes S.E.
        • Gaudino M.F.
        • Goldberger Z.D.
        • Grant M.C.
        • Jaswal J.B.
        • Kurlansky P.A.
        • Mehran R.
        • Metkus Jr., T.S.
        • Nnacheta L.C.
        • Rao S.V.
        • Sellke F.W.
        • Sharma G.
        • Yong C.M.
        • Zwischenberger B.A.
        2021 ACC/AHA/SCAI guideline for coronary artery revascularization: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines.
        J. Am. Coll. Cardiol. 2022; 79: e21-e129
        • Bustos A.
        • Pertusa A.
        • Salinas J.-M.
        • de la Iglesia-Vayá M.
        PadChest: a large chest x-ray image dataset with multi-label annotated reports.
        Med. Image Anal. 2020; 66101797
        • Wang X.
        • Peng Y.
        • Lu L.
        • Lu Z.
        • Bagheri M.
        • Summers R.M.
        ChestX-Ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases.
        in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017). 2017: 3462-3471
        • Irvin J.
        • Rajpurkar P.
        • Ko M.
        • Yu Y.
        • Ciurea-Ilcus S.
        • Chute C.
        • Marklund H.
        • Haghgoo B.
        • Ball R.
        • Shpanskaya K.
        • Seekins J.
        • Mong D.A.
        • Halabi S.S.
        • Sandberg J.K.
        • Jones R.
        • Larson D.B.
        • Langlotz C.P.
        • Patel B.N.
        • Lungren M.P.
        • Ng A.Y.
        CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison.
        AAAI Conf. Artif. Intellig. 2019; 33: 590-597
        • Johnson A.E.W.
        • Pollard T.J.
        • Berkowitz S.J.
        • Greenbaum N.R.
        • Lungren M.P.
        • Deng C.-y.
        • Mark R.G.
        • Horng S.
        MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports.
        Sci. Data. 2019; 6: 317
        • He K.
        • Zhang X.
        • Ren S.
        • Sun J.
        Deep residual learning for image recognition.
        in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016). 2016: 770-778
        • Cohen J.P.
        • Viviano J.D.
        • Bertin P.
        • Morrison P.
        • Torabian P.
        • Guarrera M.
        • Lungren M.P.
        • Chaudhari A.
        • Brooks R.
        • Hashir M.
        • Bertrand H.
        TorchXRayVision: a library of chest X-ray datasets and models.
        2021 (arXiv preprint; arXiv:2111.00595)
        • Selvaraju R.R.
        • Cogswell M.
        • Das A.
        • Vedantam R.
        • Parikh D.
        • Batra D.
        Grad-CAM: visual explanations from deep networks via gradient-based localization.
        in: 2017 IEEE International Conference on Computer Vision (ICCV). 2017: 618-626
        • Knuuti J.
        • Wijns W.
        • Saraste A.
        • Capodanno D.
        • Barbato E.
        • Funck-Brentano C.
        • Prescott E.
        • Storey R.F.
        • Deaton C.
        • Cuisset T.
        • Agewall S.
        • Dickstein K.
        • Edvardsen T.
        • Escaned J.
        • Gersh B.J.
        • Svitil P.
        • Gilard M.
        • Hasdai D.
        • Hatala R.
        • Mahfoud F.
        • Masip J.
        • Muneretto C.
        • Valgimigli M.
        • Achenbach S.
        • Bax J.J.
        2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes.
        Eur. Heart J. Engl. 2020; 41: 407-477
        • Watanabe K.
        • Hada Y.
        • Ishii K.
        • Nagaoka K.
        • Takase K.
        • Kameda W.
        • Susa S.
        • Saigusa T.
        • Egashira F.
        • Ishihara H.
        • Ishizawa K.
        Aortic arch calcification with pericardial fat mass detected on a single chest X-ray image is closely associated with the predictive variables of future cardiovascular disease.
        Heart Vessels Jpn. 2022; 37: 654-664
        • Mahabadi A.A.
        • Bamberg F.
        • Toepker M.
        • Schlett C.L.
        • Rogers I.S.
        • Nagurney J.T.
        • Brady T.J.
        • Hoffmann U.
        • Truong Q.A.
        Association of aortic valve calcification to the presence, extent, and composition of coronary artery plaque burden: from the rule out myocardial infarction using computer assisted tomography (ROMICAT) trial.
        Am. Heart J. 2009; 158: 562-568
        • Schneider M.
        • Heidari H.
        • Ran H.
        • Roth C.
        • Hengstenberg C.
        • Binder T.
        • Goliasch G.
        Predicting the presence of coronary artery disease by transesophageal echocardiography.
        Wien. Klin. Wochenschr. 2020; 132: 708-715
        • Clarson L.E.
        • Bajpai R.
        • Whittle R.
        • Belcher J.
        • Abdul Sultan A.
        • Kwok C.S.
        • Welsh V.
        • Mamas M.
        • Mallen C.D.
        Interstitial lung disease is a risk factor for ischaemic heart disease and myocardial infarction.
        Heart. 2020; 106: 916-922
        • Boschetto P.
        • Beghé B.
        • Fabbri L.M.
        • Ceconi C.
        Link between chronic obstructive pulmonary disease and coronary artery disease: implication for clinical practice.
        Respirol. Aust. 2012; 17: 422-431
        • Zhang Y.
        • He B.
        • Wang H.
        • Shi J.
        • Liang H.
        Associations between bone mineral density and coronary artery disease: a meta-analysis of cross-sectional studies.
        Arch. Osteoporos Engl. 2020; 15: 24
        • Kumar D.A.
        • Anburajan M.
        The role of hip and chest radiographs in osteoporotic evaluation among south Indian women population: a comparative scenario with DXA.
        J. Endocrinol. Invest. Italy. 2014; 37: 429-440
        • Zaman M.J.S.
        • Sanders J.
        • Crook A.M.
        • Feder G.
        • Shipley M.
        • Timmis A.
        • Hemingway H.
        Cardiothoracic ratio within the ‘normal’ range independently predicts mortality in patients undergoing coronary angiography.
        Heart. 2007; 93: 491-494
        • Seah J.C.Y.
        • Tang C.H.M.
        • Buchlak Q.D.
        • Holt X.G.
        • Wardman J.B.
        • Aimoldin A.
        • Esmaili N.
        • Ahmad H.
        • Pham H.
        • Lambert J.F.
        • Hachey B.
        • Hogg S.J.F.
        • Johnston B.P.
        • Bennett C.
        • Oakden-Rayner L.
        • Brotchie P.
        • Jones C.M.
        Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study.
        Lancet Digit Heal Engl. 2021; 3: e496-e506
        • Wolterink J.M.
        • Leiner T.
        • Takx R.A.P.
        • Viergever M.A.
        • Isgum I.
        Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection.
        IEEE Trans. Med. Imaging USA. 2015; 34: 1867-1878
        • Shadmi R.
        • Mazo V.
        • Bregman-Amitai O.
        • Elnekave E.
        Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT.
        in: 2018 IEEE 15th Int Symp Biomed Imaging (ISBI 2018). 2018: 24-28
        • Kamel P.I.
        • Yi P.H.
        • Sair H.I.
        • Lin C.T.
        Prediction of coronary artery calcium and cardiovascular risk on chest radiographs using deep learning.
        Radiol. Cardiothorac. Imaging. 2021; 3e200486
        • Raghu V.K.
        • Weiss J.
        • Hoffmann U.
        • Aerts H.J.W.L.
        • Lu M.T.
        Deep learning to estimate biological age from chest radiographs.
        JACC Cardiovasc. Imaging USA. 2021; 14: 2226-2236
        • Gibbons R.J.
        • Balady G.J.
        • Bricker J.T.
        • Chaitman B.R.
        • Fletcher G.F.
        • Froelicher V.F.
        • Mark D.B.
        • BD McCallister
        • Mooss A.N.
        • O’Reilly M.G.
        • Winters W.L.
        • Gibbons R.J.
        • Antman E.M.
        • Alpert J.S.
        • Faxon D.P.
        • Fuster V.
        • Gregoratos G.
        • Hiratzka L.F.
        • Jacobs A.K.
        • Russell R.O.
        • Smith S.C.
        ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise testing guidelines).
        J. Am. Coll. Cardiol. 2002; 40: 1531-1540
        • Di Carli M.F.
        • Gupta A.
        Estimating pre-test probability of coronary artery disease: Battle of the scores in an evolving CAD landscape.
        JACC Cardiovasc. Imaging. 2019; 12: 1401-1404
        • Lu M.T.
        • Ivanov A.
        • Mayrhofer T.
        • Hosny A.
        • Aerts H.J.W.L.
        • Hoffmann U.
        Deep learning to assess long-term mortality from chest radiographs.
        JAMA Netw. Open. 2019; 2e197416