Advertisement

Additional prognostic values of strain and strain rate over late gadolinium enhancement in hypertrophic cardiomyopathy patients

Published:November 01, 2022DOI:https://doi.org/10.1016/j.ijcard.2022.10.174

      Highlights

      • Peak systolic-global longitudinal strain rate was independently associated with major adverse cardiovascular events.
      • Patients with peak systolic-global longitudinal strain rate ≥ −0.49 s−1 had significantly better survival than patients with peak systolic-global longitudinal strain rate < −0.49 s−1.
      • The model constructed by conventional variables plus peak systolic-global longitudinal strain rate had significantly stronger predictive ability than the model constructed by conventional variables plus late gadolinium enhancement/left ventricular mass.

      Abstract

      Background

      Late gadolinium enhancement (LGE) has some shortcomings in the risk stratification in hypertrophic cardiomyopathy (HCM). Myocardial strain/strain rate (SR) can be acquired from unenhanced cardiovascular magnetic resonance (CMR) images and detect cardiac dysfunction sensitively. The present study aimed to evaluate the additional prognostic values of myocardial strain/SR beyond LGE for the risk stratification in patients with HCM.

      Methods

      293 patients with HCM who underwent CMR were enrolled in this prospective study. LGE/left ventricular (LV) mass, LV global strain, and SR were acquired based on CMR. Also, conventional clinical, echocardiography, and CMR parameters and established risk factors for HCM were evaluated.

      Results

      14/293 patients had major adverse cardiovascular events (MACEs) during the median follow-up of 15.0 months, including eight all-cause deaths, four resuscitated cardiac arrests and two cardiac transplantations. Peak systolic (PS)-global longitudinal SR (GLSR) was independently associated with MACEs (hazard ratio: 15.297, P < 0.001) after adjusting for conventional clinical characteristics, echocardiography, and CMR parameters. The model constructed by conventional variables plus PS-GLSR had significantly stronger predictive ability than the model constructed by conventional variables plus LGE/LV mass (C-statistic: 0.850 vs 0.708, P = 0.030). The addition of PS-GLSR to the conventional model also significantly improved the sensitivity (92.9% vs 71.4%) and specificity (71.0% vs 57.3%), and lowered false positives (81 patients vs 119 patients) compared to the addition of LGE/LV mass.

      Conclusion

      LV PS-GLSR derived from CMR has the potential to be a novel biomarker for risk stratification of HCM and provide additional prognostic value over LGE/LV mass.

      Keywords

      Abbreviations:

      HCM (hypertrophic cardiomyopathy), SCD (sudden cardiac death), ESC (European Society of Cardiology), ACC/AHA (American College of Cardiology/American Heart Association), ICD (implantable cardioverter-defibrillator), LGE (late gadolinium enhancement), CMR (cardiac magnetic resonance), LV (left ventricular), GBCA (gadolinium-based contrast agent), SR (strain rate), LVEF (left ventricular ejection fraction), GLS (global longitudinal strain), LVWT (left ventricular wall thickness), LVOT (left ventricular outflow tract), PS (peak systolic), GRS (global radial strain), GCS (global circumferential strain), GRSR (global radial strain rate), GCSR (global circumferential strain rate), GLSR (global longitudinal strain rate), PD (peak diastolic), NSVT (non-sustained ventricular tachycardia), MACEs (major adverse cardiovascular events), IQR (interquartile range), ICC (intraclass correlation coefficient), AUC (area under the curve), HR (hazard ratio), CI (confidence interval)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Maron B.J.
        Clinical course and management of hypertrophic cardiomyopathy.
        N. Engl. J. Med. 2018; 379: 655-668
        • Lorenzini M.
        • Anastasiou Z.
        • O’Mahony C.
        • Guttman O.P.
        • Gimeno J.R.
        • Monserrat L.
        • et al.
        Mortality among referral patients with hypertrophic cardiomyopathy vs the general European population.
        JAMA Cardiol. 2020; 5: 73-80
        • Maron M.S.
        • Rowin E.J.
        • Wessler B.S.
        • Mooney P.J.
        • Fatima A.
        • Patel P.
        • et al.
        Enhanced American College of Cardiology/American Heart Association strategy for prevention of sudden cardiac death in high-risk patients with hypertrophic cardiomyopathy.
        JAMA Cardiol. 2019; 4: 644-657
        • Elliott P.M.
        • Anastasakis A.
        • Borger M.A.
        • Borggrefe M.
        • Cecchi F.
        • Charron P.
        • et al.
        2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC).
        Eur. Heart J. 2014; 35: 2733-2779
        • Gersh B.J.
        • Maron B.J.
        • Bonow R.O.
        • Dearani J.A.
        • Fifer M.A.
        • Link M.S.
        • et al.
        2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines.
        J. Am. Coll. Cardiol. 2011; 58: 2703-2738
        • Ommen S.R.
        • Mital S.
        • Burke M.A.
        • Day S.M.
        • Deswal A.
        • Elliott P.
        • et al.
        2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines.
        Circulation. 2020; 142: e558-e631
        • Baxi A.J.
        • Restrepo C.S.
        • Vargas D.
        • Marmol-Velez A.
        • Ocazionez D.
        • H M.
        Hypertrophic cardiomyopathy from A to Z genetics, pathophysiology, imaging, and management.
        Radiographics. 2016; 36: 335-354
        • Klopotowski M.
        • Kukula K.
        • Malek L.A.
        • Spiewak M.
        • Polanska-Skrzypczyk M.
        • Jamiolkowski J.
        • et al.
        The value of cardiac magnetic resonance and distribution of late gadolinium enhancement for risk stratification of sudden cardiac death in patients with hypertrophic cardiomyopathy.
        J. Cardiol. 2016; 68: 49-56
        • Freitas P.
        • Ferreira A.M.
        • Arteaga-Fernandez E.
        • de Oliveira Antunes M.
        • Mesquita J.
        • Abecasis J.
        • et al.
        The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death.
        J. Cardiovasc. Magn. Reson. 2019; 21: 50
        • Weng Z.
        • Yao J.
        • Chan R.H.
        • He J.
        • Yang X.
        • Zhou Y.
        • et al.
        Prognostic value of LGE-CMR in HCM: a meta-analysis.
        JACC Cardiovasc. Imaging. 2016; 9: 1392-1402
        • Green J.J.
        • Berger J.S.
        • Kramer C.M.
        • Salerno M.
        Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy.
        JACC Cardiovasc. Imaging. 2012; 5: 370-377
        • Li Y.
        • Liu X.
        • Yang F.
        • Wang J.
        • Xu Y.
        • Fang T.
        • et al.
        Prognostic value of myocardial extracellular volume fraction evaluation based on cardiac magnetic resonance T1 mapping with T1 long and short in hypertrophic cardiomyopathy.
        Eur. Radiol. 2021; 31: 4557-4567
        • Avanesov M.
        • Münch J.
        • Weinrich J.
        • Well L.
        • Säring D.
        • Stehning C.
        • et al.
        Prediction of the estimated 5-year risk of sudden cardiac death and syncope or non-sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy using late gadolinium enhancement and extracellular volume CMR.
        Eur. Radiol. 2017; 27: 5136-5145
        • Kamp N.J.
        • Chery G.
        • Kosinski A.S.
        • Desai M.Y.
        • Wazni O.
        • Schmidler G.S.
        • et al.
        Risk stratification using late gadolinium enhancement on cardiac magnetic resonance imaging in patients with hypertrophic cardiomyopathy: a systematic review and meta-analysis.
        Prog. Cardiovasc. Dis. 2021; 66: 10-16
        • Scatteia A.
        • Baritussio A.
        • Bucciarelli-Ducci C.
        Strain imaging using cardiac magnetic resonance.
        Heart Fail. Rev. 2017; 22: 465-476
        • Haji K.
        • Marwick T.H.
        Clinical utility of echocardiographic strain and strain rate measurements.
        Curr. Cardiol. Rep. 2021; 23: 18
        • Gorcsan 3rd, J.
        • Tanaka H.
        Echocardiographic assessment of myocardial strain.
        J. Am. Coll. Cardiol. 2011; 58: 1401-1413
        • Kobayashi Y.
        • Moneghetti K.J.
        • Bouajila S.
        • Stolfo D.
        • Finocchiaro G.
        • Kuznetsova T.
        • et al.
        Time based versus strain based myocardial performance indices in hypertrophic cardiomyopathy, the merging role of left atrial strain.
        Eur. Heart J. Cardiovasc. Imaging. 2019; 20: 334-342
        • Maron M.S.
        • Rowin E.J.
        • Maron B.J.
        How to image hypertrophic cardiomyopathy.
        Circ. Cardiovasc. Imag. 2017; 10e005372
        • Tower-Rader A.
        • Mohananey D.
        • To A.
        • Lever H.M.
        • Popovic Z.B.
        • Desai M.Y.
        Prognostic value of global longitudinal strain in hypertrophic cardiomyopathy: a systematic review of existing literature.
        JACC Cardiovasc. Imaging. 2019; 12: 1930-1942
        • Chan R.H.
        • Maron B.J.
        • Olivotto I.
        • Pencina M.J.
        • Assenza G.E.
        • Haas T.
        • et al.
        Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy.
        Circulation. 2014; 130: 484-495
        • Hiemstra Y.L.
        • Debonnaire P.
        • Bootsma M.
        • van Zwet E.W.
        • Delgado V.
        • Schalij M.J.
        • et al.
        Global longitudinal strain and left atrial volume index provide incremental prognostic value in patients with hypertrophic cardiomyopathy.
        Circ. Cardiovasc. Imag. 2017; 10
        • RM OB
        A caution regarding rules of thumb for variance inflation factors.
        Qual. Quant. 2007; 14: 673-690
        • Tower-Rader A.
        • Betancor J.
        • Popovic Z.B.
        • Sato K.
        • Thamilarasan M.
        • Smedira N.G.
        • et al.
        Incremental prognostic utility of left ventricular global longitudinal strain in hypertrophic obstructive cardiomyopathy patients and preserved left ventricular ejection fraction.
        J. Am. Heart Assoc. 2017; : 6
        • Reant P.
        • Mirabel M.
        • Lloyd G.
        • Peyrou J.
        • Lopez Ayala J.M.
        • Dickie S.
        • et al.
        Global longitudinal strain is associated with heart failure outcomes in hypertrophic cardiomyopathy.
        Heart. 2016; 102: 741-747
        • Rowin E.J.
        • Maron B.J.
        • Wells S.
        • Burrows A.
        • Firely C.
        • Koethe B.
        • et al.
        Usefulness of global longitudinal strain to predict heart failure progression in patients with nonobstructive hypertrophic cardiomyopathy.
        Am. J. Cardiol. 2021; 151: 86-92
        • Maron B.J.
        • Desai M.Y.
        • Nishimura R.A.
        • Spirito P.
        • Rakowski H.
        • Towbin J.A.
        • et al.
        Management of hypertrophic cardiomyopathy: JACC state-of-the-art review.
        J. Am. Coll. Cardiol. 2022; 79: 390-414
        • Ommen S.R.
        • Maron B.J.
        • Olivotto I.
        • Maron M.S.
        • Cecchi F.
        • Betocchi S.
        • et al.
        Long-term effects of surgical septal myectomy on survival in patients with obstructive hypertrophic cardiomyopathy.
        J. Am. Coll. Cardiol. 2005; 46: 470-476
        • Desai M.Y.
        • Smedira N.G.
        • Dhillon A.
        • Masri A.
        • Wazni O.
        • Kanj M.
        • et al.
        Prediction of sudden death risk in obstructive hypertrophic cardiomyopathy: potential for refinement of current criteria.
        J. Thorac. Cardiovasc. Surg. 2018; 156e753
        • Hung C.L.
        • Verma A.
        • Uno H.
        • Shin S.H.
        • Bourgoun M.
        • Hassanein A.H.
        • et al.
        Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction.
        J. Am. Coll. Cardiol. 2010; 56: 1812-1822
        • Kobayashi T.
        • Popovic Z.
        • Bhonsale A.
        • Smedira N.G.
        • Tan C.
        • Rodriguez E.R.
        • et al.
        Association between septal strain rate and histopathology in symptomatic hypertrophic cardiomyopathy patients undergoing septal myectomy.
        Am. Heart J. 2013; 166: 503-511
        • Hinojar R.
        • Varma N.
        • Child N.
        • Goodman B.
        • Jabbour A.
        • Yu C.Y.
        • et al.
        T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the international T1 multicenter cardiovascular magnetic resonance study.
        Circ. Cardiovasc. Imag. 2015; 8
        • Li Z.L.
        • He S.
        • Xia C.C.
        • Peng W.L.
        • Li L.
        • Liu K.L.
        • et al.
        Global longitudinal diastolic strain rate as a novel marker for predicting adverse outcomes in hypertrophic cardiomyopathy by cardiac magnetic resonance tissue tracking.
        Clin. Radiol. 2021; 76: 78.e19-78.e25
        • Vigneault D.M.
        • Yang E.
        • Jensen P.J.
        • Tee M.W.
        • Farhad H.
        • Chu L.
        • et al.
        Left ventricular strain is abnormal in preclinical and overt hypertrophic cardiomyopathy: cardiac MR feature tracking.
        Radiology. 2019; 290: 640-648
        • Baudry G.
        • Mansencal N.
        • Reynaud A.
        • Richard P.
        • Dubourg O.
        • Komajda M.
        • et al.
        Global and regional echocardiographic strain to assess the early phase of hypertrophic cardiomyopathy due to sarcomeric mutations.
        Eur. Heart J. Cardiovasc. Imaging. 2020; 21: 291-298
        • Olivotto I.
        • Cecchi F.
        • Poggesi C.
        • Yacoub M.H.
        Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging.
        Circ. Heart Fail. 2012; 5: 535-546
        • Swoboda P.P.
        • McDiarmid A.K.
        • Erhayiem B.
        • Law G.R.
        • Garg P.
        • Broadbent D.A.
        • et al.
        Effect of cellular and extracellular pathology assessed by T1 mapping on regional contractile function in hypertrophic cardiomyopathy.
        J. Cardiovasc. Magn. Reson. 2017; 19: 16
        • Urbano-Moral J.A.
        • Rowin E.J.
        • Maron M.S.
        • Crean A.
        • Pandian N.G.
        Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy.
        Circ. Cardiovasc. Imag. 2014; 7: 11-19
        • Pagourelias E.D.
        • Mirea O.
        • Vovas G.
        • Duchenne J.
        • Michalski B.
        • Van Cleemput J.
        • et al.
        Relation of regional myocardial structure and function in hypertrophic cardiomyopathy and amyloidois: a combined two-dimensional speckle tracking and cardiovascular magnetic resonance analysis.
        Eur. Heart J. Cardiovasc. Imaging. 2019; 20: 426-437
        • Okada K.
        • Kaga S.
        • Mikami T.
        • Masauzi N.
        • Abe A.
        • Nakabachi M.
        • et al.
        Characteristic systolic waveform of left ventricular longitudinal strain rate in patients with hypertrophic cardiomyopathy.
        Heart Vessel. 2017; 32: 591-599
        • Ho C.Y.
        • Link M.S.
        Predicting the future in hypertrophic cardiomyopathy.
        Circulation. 2018; 137: 1024-1026
        • Ommen S.R.
        Sudden cardiac death risk in hypertrophic cardiomyopathy: wither our cognitive miser.
        JAMA Cardiol. 2019; 4: 647-658
        • Barbier P.
        • Mirea O.
        • Cefalu C.
        • Maltagliati A.
        • Savioli G.
        • Guglielmo M.
        Reliability and feasibility of longitudinal AFI global and segmental strain compared with 2D left ventricular volumes and ejection fraction: intra- and inter-operator, test-retest, and inter-cycle reproducibility.
        Eur. Heart J. Cardiovasc. Imaging. 2015; 16: 642-652
        • Sperry B.W.
        • Sato K.
        • Phelan D.
        • Grimm R.
        • Desai M.Y.
        • Hanna M.
        • et al.
        Regional variability in longitudinal strain across vendors in patients with cardiomyopathy due to increased left ventricular wall thickness.
        Circ. Cardiovasc. Imag. 2019; 12e008973
        • Hartlage G.R.
        • Kim J.H.
        • Strickland P.T.
        • Cheng A.C.
        • Ghasemzadeh N.
        • Pernetz M.A.
        • et al.
        The prognostic value of standardized reference values for speckle-tracking global longitudinal strain in hypertrophic cardiomyopathy.
        Int. J. Card. Imaging. 2015; 31: 557-565
        • She J.Q.
        • Guo J.J.
        • Yu Y.F.
        • Zhao S.H.
        • Chen Y.Y.
        • Ge M.Y.
        • et al.
        Left ventricular outflow tract obstruction in hypertrophic cardiomyopathy: the utility of myocardial strain based on cardiac MR tissue tracking.
        J. Magn. Reson. Imaging. 2021; 53: 51-60