Highlights
- •Recovered COVID-19 infection is associated with higher risk of myocardial infarction
- •The risk of acute myocardial infarction was 93% higher in COVID-19 recovered patients compared to the general population.
- •The risk was higher in the early phase after the infection
Abstract
Background
Objective
Methods
Results
Conclusion
Keywords
1. Introduction
- Modin D.
- Claggett B.
- Sindet-Pedersen C.
- Lassen M.C.H.
- Skaarup K.G.
- Jensen J.U.S.
- Fralick M.
- Schou M.
- Lamberts M.
- Gerds T.
- Fosbøl E.L.
- Phelps M.
- Kragholm K.H.
- Andersen M.P.
- Køber L.
- Torp-Pedersen C.
- Solomon S.D.
- Gislason G.
- Biering-Sørensen T.
2. Material and methods
2.1 Study design
2.2 Data extraction and quality assessment
2.3 Data synthesis and analysis
3. Results
3.1 Search results and included studies

3.2 Characteristics of the population and quality assessment
Authors | Sample size | COVID-19 patients | Age (years) | Males | Previous AMI | HT | DM | COPD | CKD | Obesity | HF | Cancer | Cerebrovascular disease | FW-length (months) | NOS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cohen et al. [ [7] ] | 2.895.943 | 133,366 | 75.7 | 1.227.545 (42.0) | 110.805 (3.8) | 2.081.772 (72.0) | 938.043 (32.7) | 578.650 (20)* | 528.314 (14.0) | 478.902 (17.0) | 334,654 (12) | 418.700 (14.4) | 364.782 (13.0) | 4 | 8 |
Wang et al. [ [8] ] | 2.940.988 | 691,455 | 43.8 | 1.241.483 (42.2) | NR | 440.998 (14.9) | 188.488 (6.4)** | 51,592 (1.7) | 59,177 (2.0) | 286,338 (9.7)** | NR | NR | NR | 12 | 7 |
Xie et al. [ [9] ] | 5.791.407 | 153,760 | 62.5 | 5.228.431 (90.2) | NR | 1.525.944 (26.3) | 1.321.907 (22.8) | 633.000 (10.9) | 970.057 (16.7) | 2.462.44 (42.5) | NR | 357.192 (6.1) | NR | 12 | 8 |
Daugherty et al. [ [10] ] | 9.247.505 | 266,586 | 42.4 | 4.640.393 (50.2) | 1499 (0.6) | NR | 521.699 (5.6) | NR | NR | NR | NR | NR | NR | 6 | 6 |
3.3 Pooled post-discharged incidence of acute myocardial infarction

3.4 Long-term risk of acute myocardial infarction
Items | N° of interactions | Coeff. | 95% CI | p |
---|---|---|---|---|
Age (years) | 4 | 0.008 | 0.06 to 0.013 | 0.01 |
Males (%) | 4 | 0.004 | 0.001 to 0.007 | 0.001 |
Diabetes melliuts (%) | 4 | −0.002 | −0.020 to 0.015 | 0.79 |
FW lenght (months) | 4 | −0.029 | −0.071 to −0.012 | <0.001 |
4. Discussion
- Davidson J.A.
- Banerjee A.
- Smeeth L.
- McDonald H.I.
- Grint D.
- Herrett E.
- Forbes H.
- Pebody R.
- Warren-Gash C.
- Zuin M.
- Mugnai G.
- Zamboni A.
- Zakja E.
- Valle R.
- Turiano G.
- Themistoclakis S.
- Scarpa D.
- Saccà S.
- Roncon L.
- Rizzetto F.
- Purita P.
- Polo A.
- Pantano I.
- Mugnolo A.
- Molon G.
- Meneghin S.
- Mancuso D.
- Lia M.
- Grassi G.
- Cutolo A.
- Chirillo F.
- Bozzini P.
- Bonapace S.
- Anselmi M.
- Rigatelli G.
- Bilato C.
- De Rosa S.
- Spaccarotella C.
- Basso C.
- Calabrò M.P.
- Curcio A.
- Filardi P.P.
- Mancone M.
- Mercuro G.
- Muscoli S.
- Nodari S.
- Pedrinelli R.
- Sinagra G.
- Indolfi C.
- Zuin M.
- Mugnai G.
- Zamboni A.
- Zakja E.
- Valle R.
- Turiano G.
- Themistoclakis S.
- Scarpa D.
- Saccà S.
- Roncon L.
- Rizzetto F.
- Purita P.
- Polo A.
- Pantano I.
- Mugnolo A.
- Molon G.
- Meneghin S.
- Mancuso D.
- Lia M.
- Grassi G.
- Cutolo A.
- Chirillo F.
- Bozzini P.
- Bonapace S.
- Anselmi M.
- Rigatelli G.
- Bilato C.
- De Rosa S.
- Spaccarotella C.
- Basso C.
- Calabrò M.P.
- Curcio A.
- Filardi P.P.
- Mancone M.
- Mercuro G.
- Muscoli S.
- Nodari S.
- Pedrinelli R.
- Sinagra G.
- Indolfi C.
4.1 Limitations
5. Conclusions
Data availability statement
Author statement
Declaration of Competing Interest
Appendix A. Supplementary data
Supplementary file 1: PRISMA checklist
Supplementary file 2: Funnel plots for the pooled incidence of acute myocardial infarction over 8.5 months after COVID-19 infection.
Supplementary file 3: Forest (A) and funnel (B) plots for the incidence of acute myocardial infarction over 8.5 months in control patients, defined as those experience the cardiovascular events without a previous COVID-19 infection, in the same period.
Supplementary file 4: Funnel plots for the risk of acute myocardial infarction over 8.5 months after COVID-19 infection.
References
- Role of acute infection in triggering acute coronary syndromes.Lancet Infect. Dis. 2010; 10: 83-92
- Acute COVID-19 and the incidence of ischemic stroke and acute myocardial infarction.Circulation. 2020; 142: 2080-2082
- Coronavirus disease 2019 and cardiovascular system: a narrative review.Int. J. Cardiol. Heart Vasc. 2020; 29100557
- Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19).JAMA Cardiol. 2020; 5: 811-818
- Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.PLoS Med. 2009; 6e1000097
- The Newcastle-Ottawa Scale (NOS) for Assessing the Quality if Nonrandomized Studies in meta-Analyses.
- Risk of persistent and new clinical sequelae among adults aged 65 years and older during the post-acute phase of SARS-CoV-2 infection: retrospective cohort study.BMJ. 2022; 376e068414
- Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: a retrospective cohort study from the TriNetX US collaborative networks.EClinicalMedicine. 2022; 53101619
- Long-term cardiovascular outcomes of COVID-19.Nat. Med. 2022; 28: 583-590
- Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: retrospective cohort study.BMJ. 2021; 373n1098
- Risk of acute respiratory infection and acute cardiovascular events following acute respiratory infection among adults with increased cardiovascular risk in England between 2008 and 2018: a retrospective, population-based cohort study.Lancet Digit. Health. 2021; 3: e773-e783
- Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease.JAMA. 2015; 313: 264-274
- Incidence of recognized and unrecognized myocardial infarction in men and women aged 55 and older: the Rotterdam Study.Eur. Heart J. 2006; 27: 729-736
- Acute coronary syndrome in the COVID-19 pandemic: reduced cases and increased ischaemic time.Heart Lung Circ. 2022; 31: 69-76
- Decline of admission for acute coronary syndromes and acute cardiovascular conditions during COVID-19 pandemic in Veneto region.Viruses. 2022; 14: 1925
- Società Italiana di Cardiologia and the CCU academy investigators group. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era.Eur. Heart J. 2020; 41: 2083-2088
- Incidence and mortality risk in coronavirus disease 2019 patients complicated by acute cardiac injury: systematic review and meta-analysis.J. Cardiovasc. Med. (Hagerstown). 2020; 21: 759-764
- Role of acute infection in triggering acute coronary syndromes.Lancet Infect. Dis. 2010; 10: 83-92
- Risk for myocardial infarction and stroke after community-acquired bacteremia: a 20-year population-based cohort study.Circulation. 2014; 129: 1387-1396
- Severe infections and subsequent delayed cardiovascular disease.Eur. J. Prev. Cardiol. 2017; 24: 1958-1966
- Acute infection and myocardial infarction.N. Engl. J. Med. 2019; 380: 171-176
- SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis.Lancet Microbe. 2021; 2: e13-e22
- Duration of viral shedding of discharged patients with severe COVID-19.Clin. Infect. Dis. 2020; 71: 2240-2242
- COVID-19 coagulopathy: from pathogenesis to treatment.Acta Haematol. 2022; 145: 282-296
- Sustained prothrombotic changes in COVID-19 patients 4 months after hospital discharge.Blood Adv. 2021; 5: 756-759
- Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response.J. Thromb. Haemost. 2021; 19: 1064-1070
- Sustained prothrombotic changes in convalescent patients with COVID-19.Lancet Haematol. 2021; 8e475
- Validation of ICD-10-AM coding for myocardial infarction subtype in hospitalisation data.Heart Lung Circ. 2022; 31: 849-858