Advertisement

TfR1 gene expression as a potential biomarker for iron deficiency in heart failure

      Every cell requires iron as a necessary cofactor for the activity of several enzymes involved in key cellular processes like oxidative metabolic process, DNA and RNA synthesis, and microRNAs (miRNAs) biogenesis. Moreover, iron plays a fundamental role in oxygen transport and storage as a component of hemoglobin and myoglobin, respectively. Therefore, due to its fundamental role in physiology, iron uptake by the organism and iron cellular transport is a tightly regulated process and its unbalance is associated with diseases including heart failure (HF) [
      • Alnuwaysir R.I.S.
      • Hoes M.F.
      • van Veldhuisen D.J.
      • van der Meer P.
      • Beverborg N.G.
      Iron deficiency in heart failure: mechanisms and pathophysiology.
      ]. Among others, inflammatory cellular and molecular factors are strong iron metabolism influencers, thus pathological conditions characterized by a complex imbalance in inflammation such as HF could benefit from iron-target preventive/therapeutic strategies and several clinical trials are investigating this possibility. The results of these trials could impact a large population since about 50% of outpatients with HF and almost 80% of acute ones experience iron deficiency (ID), the condition in which the availability of iron is insufficient to meet the body’s needs [
      • Cappellini M.D.
      • Comin-Colet J.
      • de Francisco A.
      • Dignass A.
      • Doehner W.
      • Lam S.P.C.
      • et al.
      Iron deficiency across chronic inflammatory conditions: international expert opinion on definition, diagnosis, and management. Vol. 92.
      ,
      • Lam C.S.P.
      • Doehner W.
      • Comin-Colet J.
      • Cappellini M.D.
      • Camaschella C.
      • de Francisco A.
      • et al.
      Iron deficiency in chronic heart failure: case-based practical guidance.
      ]. ID occurs with or without anemia and it is associated with a worsening in the quality of life, enhanced risk of hospitalization, and reduced life expectancy of HF patients [
      • Alnuwaysir R.I.S.
      • Hoes M.F.
      • van Veldhuisen D.J.
      • van der Meer P.
      • Beverborg N.G.
      Iron deficiency in heart failure: mechanisms and pathophysiology.
      ].

      Abbreviations:

      CABG (coronary artery bypass graft), HF (heart failure), HIF-1α (hypoxia-inducible factor-1alpha), ID (iron deficiency), IV (intravenous), lncRNAs (long ncRNAs), miRNAs (microRNAs), mRNAs (messenger RNAs), ncRNAs (non-coding RNAs), siRNAs (small interfering RNAs), snoRNAs (small nucleolar RNAs), TfR1 (transferrin 1 receptor), TSAT (transferrin saturation)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to International Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alnuwaysir R.I.S.
        • Hoes M.F.
        • van Veldhuisen D.J.
        • van der Meer P.
        • Beverborg N.G.
        Iron deficiency in heart failure: mechanisms and pathophysiology.
        J. Clin. Med. MDPI. 2022; 11
        • Cappellini M.D.
        • Comin-Colet J.
        • de Francisco A.
        • Dignass A.
        • Doehner W.
        • Lam S.P.C.
        • et al.
        Iron deficiency across chronic inflammatory conditions: international expert opinion on definition, diagnosis, and management. Vol. 92.
        in: American Journal of Hematology. Wiley-Liss Inc, 2017: 1068-1078
        • Lam C.S.P.
        • Doehner W.
        • Comin-Colet J.
        • Cappellini M.D.
        • Camaschella C.
        • de Francisco A.
        • et al.
        Iron deficiency in chronic heart failure: case-based practical guidance.
        in: ESC Heart Failure. 5. Wiley-Blackwell, 2018: 764-771
        • Cabrera C.
        • Frisk C.
        • Löfström U.
        • Lyngå P.
        • Linde C.
        • Hage C.
        • et al.
        Relationship between iron deficiency and expression of genes involved in iron metabolism in human myocardium and skeletal muscle,.
        Int. J. Cardiol. 2023 May; 379: 82-88
        • Peyrin-Biroulet L.
        • Williet N.
        • Cacoub P.
        Guidelines on the diagnosis and treatment of iron deficiency across indications: a systematic review.
        in: American Journal of Clinical Nutrition. American Society for Nutrition. 102. 2015: 1585-1594
        • Beverborg N.G.
        • IjT Klip
        • Meijers W.C.
        • Voors A.A.
        • Vegter E.L.
        • Van Der Wal H.H.
        • et al.
        Definition of iron deficiency based on the gold standard of bone marrow iron staining in heart failure patients.
        Circ. Heart Fail. 2018 Feb 1; 11
        • Savarese G.
        • von Haehling S.
        • Butler J.
        • Cleland J.G.F.
        • Ponikowski P.
        • Anker S.D.
        Iron deficiency and cardiovascular disease.
        Eur. Heart J. 2023; 44 (Oxford University Press): 14-27
        • Filippatos G.
        • Farmakis D.
        • Colet J.C.
        • Dickstein K.
        • Lüscher T.F.
        • Willenheimer R.
        • et al.
        Intravenous ferric carboxymaltose in iron-Deficient chronic heart failure patients with and without anaemia: a subanalysis of the FAIR-HF trial.
        Eur. J. Heart Fail. 2013 Nov 1; 15: 1267-1276
        • Beck-Da-Silva L.
        • Piardi D.
        • Soder S.
        • Rohde L.E.
        • Pereira-Barretto A.C.
        • De Albuquerque D.
        • et al.
        IRON-HF study: a randomized trial to assess the effects of iron in heart failure patients with anemia.
        Int. J. Cardiol. [Internet]. 2013 Oct 9; 168 ([cited 2023 May 10]. Available from:) ([cited 2023 May 10]. Available from:): 3439-3442
        • Vanhaverbeke M.
        • Attard R.
        • Bartekova M.
        • Ben-Aicha S.
        • Brandenburger T.
        • de Gonzalo-Calvo D.
        • et al.
        Peripheral blood RNA biomarkers for cardiovascular disease from bench to bedside: a position paper from the EU-CardioRNA COST action CA17129.
        Cardiovasc. Res. 2022 Dec 29; 118: 3183-3197
        • Sansonetti M.
        • De Windt L.J.
        Non-coding RNAs in cardiac inflammation: key drivers in the pathophysiology of heart failure.
        in: Cardiovascular Research. 118. Oxford University Press, 2022: 2058-2073
        • Lu J.
        • Xu F.
        • Lu H.
        LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53.
        Life Sci. 2020 Nov 1; 260118305
        • Liu L.
        • Zhang D.
        • Li Y.
        LncRNAs in cardiac hypertrophy: From basic science to clinical application.
        J. Cell Mol. Med. [Internet]. 2020 Oct 1; 24 ([cited 2023 May 11]): 11638-11645https://doi.org/10.1111/jcmm.15819
        • Lei D.
        • Li B.
        • Isa Z.
        • Ma X.
        • Zhang B.
        Hypoxia-elicited cardiac microvascular endothelial cell-derived exosomal miR-210–3p alleviate hypoxia/reoxygenation-induced myocardial cell injury through inhibiting transferrin receptor 1-mediated ferroptosis.
        Tissue Cell [Internet]. 2022; 79 (Available from: https://www.sciencedirect.com/science/article/pii/S0040816622002282)101956
      1. A. Cirovic, Letter to the editor for the “relationship between iron deficiency and expression of genes involved in iron metabolism in human myocardium and skeletal muscle.”, Int. J. Cardiol. [Internet] (2023 Apr) 20:S0167-5273(23)00586-7 [cited 2023 May 12];0(0). Available from: http://www.internationaljournalofcardiology.com/article/S0167527323005867/fulltext.

        • Germana Z.
        • Simona G.
        • Marialucia L.
        • Biagina M.
        • Christine V.
        • Paola F.
        • et al.
        Hypoxia-induced miR-210 modulates the inflammatory response and fibrosis upon acute ischemia.
        Cell Death Dis. 2021 May 1; 12 ([cited 2023 May 12]. Available from) ([cited 2023 May 12]. Available from): 1-14